Report #094 #### Red River Coal Company Benthic Macroinvertebrate Survey Fall 2012 #### **Submitted To:** Roger Jones P.O. Box 668 6999 Polk Road Norton, Virginia 24273 United States of America #### **Submitted By:** Biological Monitoring, Inc. 1800 Kraft Drive, Suite 104 Blacksburg, VA 24060 Phone: 540-953-2821 Fax: 540-951-1481 Email: bmi@biomon.com 11JAN2013 #### **EXECUTIVE SUMMARY** Biological Monitoring, Inc. (BMI) performed a stream survey in the South Fork Pound River Watershed for Red River Coal Company. The purpose of this survey was to conduct instream assessments as outlined in Red River's permits. Six instream monitoring stations were sampled. The Virginia Stream Condition Index (VASCI) protocol was used for instream biological surveys. All biological sampling was performed in accordance with the Virginia Department of Game and Inland Fisheries' scientific collection permit requirements. Samples were collected on November 5th, 2012. Benthic samples were collected based on BMI's QAPP. All organisms were identified to the lowest practicable level and collapsed to the family level for VASCI calculation. The US EPA's Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers was used for sampling macroinvertebrate populations and performing habitat assessments. The analysis of the Fall 2012 survey data yielded VASCI scores ranging from 20.61 (SFP-1) to 66.57 (SC-1). Using the Virginia Department of Environmental Quality devised scale, these stations were classified in the "Severe Stress", "Stress" and "Good" Aquatic Life Use (ALU) Tiers. The habitat assessment scores ranged from 151 (SC-1) to 167 (SFP-1A) falling into the "Suboptimal" and "Optimal" categories of habitat. Physicochemical and chemical analyses seem typical for mining influenced streams in the region. ## **TABLE OF CONTENTS** | EXE | CUTIVE SUMMARY | I | |-------|---|-----| | TABI | LE OF CONTENTS | II | | LIST | OF FIGURES & TABLES | III | | Lis | T OF FIGURES | III | | Lis | T OF TABLES | III | | 1.0 | INTRODUCTION | 1 | | 2.0 | METHODS AND MATERIALS | 2 | | 2.1 | General | 2 | | 2.2 | | | | 2.3 | MACROINVERTEBRATE SAMPLING & ASSESSMENT | 7 | | 2 | 2.3.1 Sampling & Identification | 7 | | 2 | 2.3.2 Macroinvertebrate Data Assessment | 8 | | 2.4 | | | | 2.5 | | | | 2.6 | CHEMICAL MONITORING | 13 | | 3.0 | RESULTS | 14 | | 3.1 | STATION LOCATION | 14 | | 3.2 | MACROINVERTEBRATE MONITORING DATA | 14 | | 3 | 3.2.1 Virginia Stream Condition Index Metrics | 14 | | 3 | 3.2.2 Virginia Stream Condition Index Scores | | | 3.3 | | | | 3.4 | | | | 3.5 | CHEMICAL MONITORING | 20 | | 4.0 | DISCUSSION | 21 | | 4.1 | STATION LOCATION | 21 | | 4.2 | MACROINVERTEBRATE DATA | 21 | | 4.3 | HABITAT ASSESSMENT | 22 | | 4.4 | WATER QUALITY ASSESSMENT | 22 | | 5.0 | LITERATURE CITED | 23 | | APPI | ENDIX A: STATION PHOTOGRAPHS | A | | A DDI | ENDLY R. DAW DATA | R | ## **LIST OF FIGURES & TABLES** ## **List of Figures** | FIGURE 1. MAP OF THE MONITORING STATIONS. | 5 | |---|----| | FIGURE 2. ORTHOPHOTO OF THE STUDY AREA | 6 | | FIGURE 3. VASCI SCORING SUMMARY | 17 | | FIGURE 4. HABITAT SCORING SUMARY | 19 | | | | | List of Tables | | | TABLE 1. MONITORING STATION ATTRIBUTES | 4 | | TABLE 2. VASCI METRICS AND EXPECTED RESPONSES | 10 | | TABLE 3. HABITAT ASSESSMENT PARAMETERS | | | Table 4. Identification / Enumeration Data | | | TABLE 5. VASCI METRICS. | 16 | | TABLE 6. VASCI SCORING. | 16 | | TABLE 7. RBP HABITAT SCORING. | 18 | | Table 8. Water Quality Analyses | 20 | #### 1.0 INTRODUCTION Biological Monitoring, Inc. (BMI) performed a stream survey for Red River Coal Company in the South Fork Pound River Watershed located in Wise County, Virginia. The purpose of this survey was to conduct instream assessments in fulfillment of permit requirements. The present report provides the methods utilized and the results obtained from the November 5, 2012 sampling event. BMI is a Tier III (VA) bio-monitoring facility as well as a National Environmental Laboratory Accreditation Program (NELAP) accredited Whole Effluent Toxicity Laboratory. BMI specializes in issues of water quality. Since 1980, BMI has been providing expertise in aquatic toxicology and risk assessment. Highly motivated and academically trained scientists at BMI work closely with clients to create practical solutions to environmental problems. BMI has maintained a commitment to the research and development of aquatic biomonitoring and toxicological concepts resulting in leading edge technologies and applications. BMI interacts with regulatory agencies on behalf of its clients to solve specific environmental problems associated with water quality and toxicological regulations and permit compliance. With its main facilities located in Blacksburg, Virginia, BMI focuses on the development and application of procedures to create feasible solutions that balance the need for environmental protection and continued economic development. #### 2.0 METHODS AND MATERIALS #### 2.1 General On November 5, 2012, samples were collected from several instream stations in the South Fork Pound River Watershed. Generally, instream stations were sampled for benthic macroinvertebrates as well as analytical and physicochemistry. Grab samples were used for analytical and physicochemistry. Macroinvertebrate samples were collected following BMI's Biological Monitoring Program Quality Assurance Project Plan for Wadeable Streams and Rivers (QAPP) (BMI 2012). The Virginia Stream Condition Index (VASCI) protocol was used for this instream biological survey (Tetra Tech 2003). The US EPA's Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers (RBP) was used for sampling macroinvertebrate populations and performing habitat assessments (USEPA 1999). Qualitative habitat assessments were conducted at each bioassessment site by trained and experienced individuals. Physicochemical monitoring was performed in the field. Chemistry samples were collected and submitted to Environmental Monitoring, Inc. for analyses. This survey was conducted in accordance with Red River's permit conditions. #### 2.2 Station Location Six instream monitoring stations were specified for this project. Station location was provided by the permittee. These stations were located in Wise County, Virginia and in the South Fork Pound River Watershed. Latitude and longitude coordinates were recorded at the downstream extent of the station using a Garmin[®] Global Positioning System portable unit (GPSMAP 60 CSX). Table 1 summarizes the monitoring station attributes. Figure 1 provides a map of the area and the location of the monitoring stations. Figure 2 presents an orthophoto of study area. Station photographs are presented as Appendix A. Table 1. Monitoring Station Attributes. | Station ID | Location Summary | Latitude | Longitude | |------------|---|---------------|---------------| | SFP-1 | Most upstream station | 37° 03' 57.0" | 82° 41' 40.6" | | SFP-1A | Approximately 50m US Road Crossing | 37° 04' 15.3" | 82° 41' 02.8" | | SFP-2 | Downstream of confluence of Rat Creek and
South Fork Pound River | 37° 04' 45.9" | 82° 39' 30.8" | | SC-1 | Mouth of Short Creek | 37° 04 36.9" | 82° 39' 29.4" | | RC-1 | Mouth of Rat Creek | 37° 04' 36.3" | 82° 39' 27.1" | | GF-1 | Mouth of Glady Fork | 37° 05' 23.1" | 82° 37' 51.4" | Figure 1. Map of the Monitoring Stations. Figure 2. Orthophoto of the Study Area #### 2.3 Macroinvertebrate Sampling & Assessment #### 2.3.1 Sampling & Identification All biological sampling was performed in accordance with the Virginia Department of Game and Inland Fisheries' scientific collection permit requirements. Macroinvertebrates were collected at each benthic station following the single habitat approach (riffle-run) as presented in the QAPP (BMI 2012). Samples were collected using a semi-quantitative approach. Four samples were collected at each station using a 0.50 m wide rectangular kick-net having a 500 µm mesh size. Each sample was collected by first placing the net on the bottom downstream of the 0.50 m² area to be sampled. Where appropriate, large rocks and debris were brushed off into the net and removed. The area to be sampled was then vigorously kicked for approximately 30 to 90 seconds or the Best Professional Judgment of the scientist. For each monitoring station, the four samples were rinsed, composited, placed in a labeled container, and preserved in 70% ethanol. Sample information was recorded on a BMI Sample Chain of Custody Form and returned to BMI's laboratory for enumeration and identification. Organisms were separated from the debris in the laboratory. Subsampling was performed on each sample to a standard count of $110 \pm 10\%$. All organisms were identified to the lowest practicable level. Organism identification utilized the appropriate taxonomic keys (Merritt and Cummins 2008). All data analysis was performed at the family level in order to use the Virginia Stream Condition Index (VASCI). All organisms from this study will be retained for a period of at least five years. #### 2.3.2 Macroinvertebrate Data Assessment Macroinvertebrate data were analyzed using *A Stream Condition Index for Virginia Non-Coastal Streams* (Tetra Tech 2003). This VASCI was developed from an analysis of data collected by the Virginia DEQ from 1994 to 1998 and 1999 to 2002. Using these data, VASCI designated statewide reference values were determined for each of the following eight metrics of community structure: - Total Number of Taxa measures the total number of distinct taxa and, therefore, is representative of the diversity within a sample. High diversity is a strong indicator of stream health and ability to sustain populations. This metric value is expected to decrease in response to increased perturbation. - Total Number of EPT Taxa is a measure of the total
number of distinct taxa within the Orders Ephemeroptera, Plecoptera, and Trichoptera. These orders include the mayflies, stoneflies, and caddis flies, respectively. Organisms in these three orders have low tolerances to perturbation. As a result, the value of the metric is expected to decrease in response to increasing perturbation. - **Percent Ephemeroptera** is the percentage of individual Ephemeroptera (mayflies) within a sample. This metric is calculated by dividing the number of Ephemeroptera by the total number of sample organisms. This metric indicates the relative abundance of this sensitive order within the stream community. The value of this metric is expected to decrease in response to increasing perturbation. - **Percent P T Less Hydropsychidae** is the percentage of individuals from the orders Plecoptera and Trichoptera "less" the individuals from the family Hydropsychidae. This metric is calculated by dividing the number of organisms from the orders Plecoptera and Trichoptera (less Hydropsychidae) by the total number of sample organisms. This metric indicates the relative abundance of these sensitive orders within the stream community. The value of this metric is expected to decrease in response to increasing perturbation. - Percent Scrapers is percent abundance of individuals in the sample whose primary functional mechanism for obtaining food is to graze on substrate or periphyton, attached algae and associated material within a sample. This metric is calculated by dividing the number of organisms from the functional feeding group "scrapers" by the total number of sample organisms. The value of this metric is expected to decrease in response to increasing perturbation. - Percent Chironomidae is the percent individual organisms of the Family Chironomidae within a sample. The metric is calculated by dividing the number of Chironomidae organisms by the total number of sample organisms. Family Chironomidae, the midges, are tolerant to perturbation and their relative abundance tends to increase in impacted streams. As a result, the value of this metric is expected to increase in response to increasing perturbation. - Percent Two Dominant Taxa is the percentage of total individuals in the two taxa with the greatest number of organisms. The metric is calculated by adding the number of organisms present in the two largest taxa. Dividing this sum by the total number of organisms yields the relative abundance of the two dominant taxa. Samples with populations concentrated into a few taxa may be an indication of impact. This metric is expected to increase in response to increasing perturbation. - Hilsenhoff Biotic Index (HBI) was originally designed to evaluate organic pollution by utilizing tolerance values to weight taxa abundance. The resulting HBI value is an estimation of overall pollution level. The metric is expected to increase in response to increasing perturbation. The VASCI metrics and their expected response to perturbation are summarized in Table 2. Table 2. VASCI Metrics and Expected Responses. | Metric | Expected Response | |--------------------------------|-------------------| | Total Number of Taxa | Decrease | | Total Number of EPT Taxa | Decrease | | Percent Ephemeroptera | Decrease | | Percent PT Less Hydropsychidae | Decrease | | Percent Scrapers | Decrease | | Percent Chironomidae | Increase | | Percent Two Dominant Taxa | Increase | | Hilsenhoff Biotic Index | Increase | VASCI scores for each of the monitoring stations were calculated by dividing each station's metric values by the corresponding VASCI statewide reference values. This yielded a percentage score for each metric relative to the statewide reference condition. If the percentage score of any individual metric was greater than 100, the score was truncated to 100. The eight resulting values were then averaged to arrive at the VASCI score for each station. #### 2.4 Habitat Assessment Habitat assessments were performed at each benthic station where macroinvertebrates were collected. These assessments were performed as per the RBP (USEPA 1999). Ten habitat parameters were assessed, each receiving a score of 0 - 20. A description of each of the habitat parameters follows: - Epifaunal Substrate / Available Cover rate the availability of structures in the stream that can be utilized as refuge, spawning, and feeding sites by macroinvertebrates. Examples of such structures would include boulders, cobble, undercut banks, roots, logs and branches. The availability of cover can be a limiting factor on stream diversity and abundance. - Embeddedness rate the degree to which coarse substrate such as gravel; cobble and boulders are sunken into the sand, silt and mud substrate of the stream bottom. Embeddedness is the result of sediment movement and deposition. Increased embeddedness reduces the available refuge, feeding and spawning sites available to macroinvertebrates resulting in lower diversity and abundance. - Velocity / Depth Regimes gauge the presence or absence of four velocitydepth patterns. These patterns are slow-deep, slow-shallow, fast-deep, and fast-shallow. Ideally, all four patterns should be present to best provide a stable diverse stream community. - Sediment Deposition rates the degree to which new sediment has accumulated in pools, point bars and islands. Sediment deposition may be an indicator of an unstable environment and lowered diversity. - Channel Flow Status rates the degree to which water fills the stream channel. Channel flow status may be affected by obstructions, diversions or widening of the stream channel. As less of the channel is filled by water, the amount of suitable substrate is also reduced. - Channel Alteration rate the degree to which the shape of the stream channel has been altered. Alterations may include bridges, roads, diversion channels, channel straightening, artificial embankments, riprap, dams, weirs, and other instream structures. Channel alteration often results in scouring and loss of available habitat. - Frequency of Riffles (or Bends) rates the presence of quality riffle or sinuous habitat. Riffles and sinuous streams provide quality habitat for stable, diverse communities. - Bank Stability indicates the degree to which banks have eroded or may erode. Eroded banks are a sign of sediment movement and deposition, which leads to reduced epifaunal habitat. Unstable banks may also point to poor vegetative cover. - Bank Vegetative Protection gauges the extent of vegetative protection at the stream bank and the nearby riparian zone. Bank vegetation plays a vital role in erosion control, nutrient uptake, stream shading, and food supply. - Riparian Vegetative Zone Width measures the extent of natural vegetation from the stream through the riparian zone. Wide vegetative zones provide pollution buffering, erosion control, habitat, nutrient uptake and nutrient input. These beneficial contributions can be impaired by commercial and residential development, roads, pastures, actively worked fields, etc. Table 3 identifies each of the ten Habitat Assessment Parameters and their range of scores. Scores for each parameter were recorded on Habitat Assessment Field Log Sheets (USEPA 1999). The habitat assessment score for each station was calculated by adding the score for each parameter yielding a station total. The highest attainable score was 200. The actual habitat assessment process involves rating the ten parameters as optimal (>153), suboptimal (101-153), marginal (46-100), or poor (<45). Table 3. Habitat Assessment Parameters | Parameter | Description | Scoring | |-----------|---------------------------------------|------------| | 1 | Epifaunal Substrate / Available Cover | 0-20 | | 2 | Embeddedness | 0-20 | | 3 | Velocity / Depth Regime | 0-20 | | 4 | Sediment Deposition | 0-20 | | 5 | Channel Flow Status | 0-20 | | 6 | Channel Alteration | 0-20 | | 7 | Frequency of Riffles or Bends | 0-20 | | 8 | Bank Stability | Left 0-10 | | o | Bank Stability | Right 0-10 | | 9 | Vegetative Protection | Left 0-10 | | 9 | vegetative i fotection | Right 0-10 | | 10 | Piparian Vagatatiya Zona Width | Left 0-10 | | 10 | Riparian Vegetative Zone Width | Right 0-10 | ### 2.5 Physicochemical Assessment Prior to any field data collections, all handheld meters were calibrated. Conductivity (μ S), Dissolved Oxygen (mg/L), pH (SU) and temperature (°C) were recorded at each of the sample stations, where appropriate. Conductivity, Dissolved Oxygen, pH and Temperature were all recorded using calibrated field meters. Field meters included an Oakton PCTestr 35 combination pH/EC/TDS/Temperature Meter and a Hanna model HI 9142 Dissolved Oxygen Meter. ## 2.6 Chemical Monitoring Samples for analytical chemistry were collected and analyzed by Environmental Monitoring, Inc. #### 3.0 RESULTS #### 3.1 Station Location Station attributes, including latitudes and longitudes are presented in Table 1 and depicted in Figures 1 and 2. Station photographs are presented in Appendix A. Flow was adequate for sampling at all stations. #### 3.2 Macroinvertebrate Monitoring Data #### 3.2.1 Virginia Stream Condition Index Metrics The $110 \pm 10\%$ subsample is summarized in Table 4. The VASCI metric values for the monitoring stations sampled are summarized in Table 5. Raw data are presented in Appendix B. Table 4. Identification / Enumeration Data | Order | Family | SFP-1 | SFP-
1A | SFP-2 | SC-1 | RC-1 | GF-1 | |---------------|------------------|-------|------------|-------|------|------|------| | Colcontono | Elmidae | | | | 3 | | 1 | | Coleoptera | Psepheniidae | 1 | | | 1 | | | | Diptera | Tipulidae | 1 | | 1 | 8 | 2 | 1 | | | Chironomidae | 68 | 77 | 43 | 20 | 54 | 15 | | | Empididae | | | | | 1 | | | | Simuliidae | 32 | 1 | | 6 | 1 | 3 | | | Baetidae | | | | 7 | 2 | | | Ephemeroptera | Ephemerellidae | | | | 2 | | | | | Heptageniidae | | | | 3 | | | | Plecoptera | Capniidae | | 9 | 23 | 8 | | 31 | | | Leuctridae | | 11 | | 26 | 3
| | | | Nemouridae | | | | 2 | 2 | 5 | | | Taeneopterigidae | | | 9 | | | 33 | | Trichoptera | Hydropsychidae | 3 | 19 | 27 | 9 | 33 | 12 | | | Philopotamidae | | | | 6 | 3 | 1 | | | Rhyacophilidae | | | 1 | | | 6 | | Odonata | Calopterygidae | 1 | | | | | | | | Gomphidae | | | | | 1 | | | Megaloptera | Corydalidae | 2 | | | | | 1 | | Oligochaeta | | 7 | | | _ | | 1 | | Collembola | | | | | 7 | | | | Isopoda | Asellidae | | | | 1 | | | | | Total | 115 | 117 | 104 | 109 | 102 | 111 | Table 5. VASCI Metrics. | | SFP-1 | SFP-1A | SFP-2 | SC-1 | RC-1 | GF-1 | |-----------------------------|-------|--------|-------|-------|-------|-------| | Total Taxa | 8 | 5 | 6 | 15 | 11 | 12 | | EPT Taxa | 1 | 3 | 4 | 8 | 6 | 6 | | %Ephemeroptera | 0 | 0 | 0 | 11.01 | 1.96 | 0 | | %Plec+Tric less Hydropsych. | 0 | 17.09 | 31.73 | 38.53 | 27.45 | 68.47 | | %Scrapers | 0.87 | 0 | 0 | 6.42 | 0 | 0.9 | | %Chironomidae | 59.13 | 65.81 | 41.35 | 18.35 | 52.94 | 13.51 | | % Top 2 Dominant | 86.96 | 82.05 | 63.46 | 42.2 | 72.55 | 57.66 | | HBI (Family) | 6.05 | 5.05 | 4.46 | 3.47 | 4.53 | 2.85 | #### 3.2.2 Virginia Stream Condition Index Scores Table 6 presents a summary of the VASCI scoring. Raw data are presented in Appendix B. Each metric score represents a percentage of the statewide reference condition. The VASCI scores calculated ranged from 20.61 (SFP-1) to 66.57 (SC-1). Table 6. VASCI Scoring. | | SFP-1 | SFP-1A | SFP-2 | SC-1 | RC-1 | GF-1 | |-----------------------------|-------|--------|-------|-------|-------|-------| | Total Taxa | 36.36 | 22.73 | 27.27 | 68.18 | 50 | 54.55 | | EPT Taxa | 9.09 | 27.27 | 36.36 | 72.73 | 54.55 | 54.55 | | %Ephemeroptera | 0 | 0 | 0 | 17.96 | 3.20 | 0 | | %Plec+Tric less Hydropsych. | 0 | 48.02 | 89.13 | 100 | 77.11 | 100 | | %Scrapers | 1.69 | 0 | 0 | 12.45 | 0 | 1.75 | | %Chironomidae | 40.87 | 34.19 | 58.65 | 81.65 | 47.06 | 86.49 | | % Top 2 Dominant | 18.85 | 25.94 | 52.80 | 83.52 | 39.67 | 61.19 | | HBI (Family) | 58.06 | 72.78 | 81.45 | 96.06 | 80.45 | 100 | | VASCI | 20.61 | 28.86 | 43.21 | 66.57 | 44.00 | 57.31 | Figure 3 is a graphical representation of the VASCI score(s) along with the Aquatic Life Use Tiers. It should be noted that four tiers exist in the VASCI, whereas, a score of 60 or higher is considered "unimpaired" and a score of < 60 is considered "impaired". Figure 3. VASCI Scoring Summary #### 3.3 Habitat Assessment Table 7 presents a summary of the habitat assessment score for the monitoring stations. Raw data are presented in Appendix B. The habitat assessment scores ranged from 151 (SC-1) to 167 (SFP-1A) falling into the "Suboptimal" and "Optimal" categories of habitat. Table 7. RBP Habitat Scoring. | Parameter | SFP-1 | SFP-1A | SFP-2 | SC-1 | RC-1 | GF-1 | |---------------------|-------|--------|-------|------|------|------| | Subst./Cover | 17 | 17 | 17 | 16 | 18 | 16 | | Embeddedness | 15 | 13 | 15 | 13 | 14 | 15 | | Velocity | 17 | 18 | 19 | 17 | 19 | 19 | | Sediment Dep. | 13 | 15 | 16 | 14 | 14 | 15 | | Channel Flow | 20 | 20 | 20 | 19 | 20 | 20 | | Channel Alt. | 15 | 16 | 15 | 15 | 14 | 14 | | Freq of Riffles | 18 | 19 | 20 | 20 | 20 | 19 | | Bank Stab L | 6 | 5 | 8 | 9 | 9 | 10 | | Bank Stab R | 9 | 8 | 9 | 9 | 7 | 8 | | Veg. Prot. L | 6 | 10 | 8 | 6 | 10 | 10 | | Veg. Prot. R | 10 | 10 | 5 | 8 | 8 | 5 | | Rip. Zone L | 2 | 8 | 3 | 0 | 6 | 10 | | Rip. Zone R | 10 | 8 | 0 | 5 | 2 | 2 | | Total | 158 | 167 | 155 | 151 | 161 | 163 | Figure 4 is a visual representation of the habitat score(s) obtained for this permit along with the different tiers. Figure 4. Habitat Scoring Sumary ## 3.4 Water Quality Assessment Table 8 presents the water quality assessments. Table 8. Water Quality Analyses. | | SFP-1 | SFP-1A | SFP-2 | SC-1 | RC-1 | GF-1 | |-------------------------|-------|--------|-------|------|------|------| | Conductivity (µS/cm) | 2020 | 2060 | 1942 | 401 | 1224 | 512 | | Dissolved Oxygen (mg/L) | 8.3 | 9.0 | 9.0 | 9.2 | 9.2 | 9.3 | | pH (SU) | 7.6 | 8.2 | 8.4 | 8.1 | 8.0 | 7.9 | | Temperature (°C) | 14.0 | 12.4 | 12.4 | 9.2 | 9.4 | 7.7 | ## 3.5 Chemical Monitoring Results from the chemical monitoring are not included in this report. Results will be provided by Environmental Monitoring, Inc. separately. #### 4.0 DISCUSSION Water quality and both instream and riparian habitat are important determinants of the composition, structure, and function of biotic communities. The instream water quality assessments and the RBP Habitat Assessment techniques used in this study do not provide adequate discriminatory power to differentiate cause and effect. A systematic assessment of instream and riparian habitat quality is necessary to fully assess water quality conditions in streams and rivers (USEPA 1999). #### 4.1 Station Location Since the sampling locations were presumably specified in the permit, it is assumed that they are representative of the permit in question. Furthermore, this study represents a significant component of the holistic watershed management approach cited in DMLR Guidance Memorandum 32-10 Revised (DMLR 2011). #### 4.2 Macroinvertebrate Data The VASCI values in this study should be considered a relative ranking, indicating the comparability of the studied stream to the statewide reference for least disturbed streams. As such, these values should not be considered an absolute rating. The VASCI validation document recommends Aquatic Life Use tiers based on the VASCI scores (VADEQ 2006). These tiers and their respective scores are as follows: - > "Severe Stress indicates scores below 43; - > "Stress" indicates scores from 43 to 59; - ➤ "Good" conditions indicate scores from 60 to 72; and - ➤ "Excellent" stream quality is represented by scores above 72. The VASCI scores calculated for this permit ranged from 20.61 (SFP-1) to 66.57 (SC-1). These scores fall into the "Severe Stress", "Stress" and "Good" Aquatic Life Use tiers. #### 4.3 Habitat Assessment Habitat plays an important role in species composition, various assemblages and numbers of organisms found in aquatic environments. To make meaningful impact analyses, one must consider habitat data as a possible limiting factor. The habitat assessment scores ranged from 151 (SC-1) to 167 (SFP-1A) falling into the "Suboptimal" and "Optimal" categories of habitat. RBP habitat assessment techniques are qualitative in nature and designed to determine comparability and ranking amongst stations. Traditionally, this approach assumes the presence of a reference station for the data set. To further explore the role habitat may be playing on the benthic score; additional data will have to be collected. ## 4.4 Water Quality Assessment The water chemistry parameters examined, conductivity, pH, temperature and flow, were typical for streams influenced by urban environments and mining in the region. #### 5.0 LITERATURE CITED - Biological Monitoring, Inc. (2011) *Biological Monitoring, Inc. Quality Assurance Program Plan for Wadeable Streams and Rivers*; BMI; Blacksburg, VA. - Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap A8, 65 p. - Merritt, R.W. and K.W. Cummins (2008) An Introduction to the Aquatic Insects of North America; Kendall/Hunt Pub.; Dubuque, Iowa. - Tetra Tech, Inc. (2003) A stream condition index for Virginia non-coastal streams. March 2003, revised September 2003; Owings Mills, MD. - United States Environmental Protection Agency (1999) Rapid bioassessment protocols for use in wadeable streams and rivers, second edition; EPA 841-B-99-002. Washington D.C. - Virginia Department of Environmental Quality (2011) Draft Guidance Memo No. 11-2007 2012 Water Quality Assessment Guidance Manual; VDEQ; Richmond, VA. - Virginia Department of Environmental Quality (2008) Biological Monitoring Program Quality Assurance Project Plan for Wadeable Streams and Rivers; VDEQ; Richmond, VA. - Virginia Department of Environmental Quality (2006) Using Probabilistic Monitoring Data to Validate the Non-Coastal Virginia Stream Condition Index; VDEQ; Richmond, VA. # APPENDIX A: STATION PHOTOGRAPHS #### SFP-1 #### SFP-1A #### SFP-2 #### SC-1 #### RC-1 #### GF-1 ## APPENDIX B: RAW DATA | u | | |---------|------| | Station | SFP1 | | EPT Taxa | 1.00 | | |----------------------|--------|--| | Total Taxa | 8.00 | | | Abundance | 115.00 | | | Total PT | 3.00 | | | Total Chironomidae | 00'89 | | | Total Scrapers | 1.00 | | | Total Ephemeroptera | 00.0 | | | Total Hydropsychidae | 3.00 | | | % Ephemeroptera | % PT less Hydropsychidae | % Scrapers | % Chironomidae | Two Dominant Taxa # | Two Dominant Taxa # %Top two dominant taxa FFG # | HBI (Family) | |--------------------------------|--|---------------------------|----------------|---------------------|--|--------------| | 0.00 | 0.00 | 0.87 | 59.13 | 100.00 | 96.98 | 696.00 | | SFP1 | | | | | | | | | VASCI Metrics vs. Standard VASCI Metrics (Truncated) | VASCI Metrics (Truncated) | | | | | | Number of Taxa | 36.36 | | | | | | | Number of EPT Taxa | 60.6 | | | | | | | Percent E | 0.00 | | | | | | | Percent PT Less Hydropsychidae | 0.00 | 0.00 | | | | | | Percent Scrapers | 1.69 | | | | | | | Percent Chironomidae | 40.87 | | | | | | | Percent Two Dominant | 18.85 | | | | | | | Hilsenhoff Biotic Index | 58.06 | | | | | | | Raw VASCI | Final VASCI | |-----------|-------------| | 20.61 | 20.61 | ### **Benthic Macroinvertebrate Laboratory Bench Sheet** | Station ID: | SEPI | Sample Subsorted by: | | Date Subsorted | : | | |------------------|--|--|---------------------|--|----------------|----------------| | StationName: | | # of Grids subsorted: | | | | Ī | | Date Sampled: | | Total # of Subsorted Insects: | | | · | | | Sampling Method: | |
Sample Identified by: | Time and the second | Date Identified: | | No. | | | <u> </u> | | | | | | | ales | | • | İ | | Total # of | # to | | 4 | | TAXON | # | of larvae | Organisms | | | 1 | Oligach | aeta | lacu | | 7 | | | 2 | Tipulida | | 1 | | 1 1 | | | 3 . | Simulad | | HITHE MINE | user maser I I | 32. | | | 4 | Chiron | | INT INT INT | W PHETHE BALL THE CHE | 68 | | | 5 | Pseples | _ | 1 | AT THE THE THE THE | 1 | | | 6 | Corndo | lidae | lu . | | 7_ | - w | | 7 | Calepte | runder | 1 | | 1 | | | 8 | Hudiop | such das Coratorycle | 10 | | 3 | , | | 9 | 1.03.11.26 | 3 | | | | | | 10 | | | | | . | | | 11 | | | | <u></u> | | | | 12 | | | | | | | | 13 | | | | | <u> </u> | | | 14 | | · | | | | | | 15 | | ,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | " | . • | | | | 16 | ************************************* | | | ** | | | | 17 | | | | | | | | 18 | | | | | | | | 19 | | | | ** - | ····· | | | 20 | | | | ************************************** | | | | 21 | | | | | | | | 22 | | | | , | | | | 23 | | - | | | | | | 24 | | | | ٠. | | | | 25 | | | | | | | | | | TOTALS | | | 115 | | #### Sub-sample and Sample Reduction (per SOP) ### Sub-sample and Sample Reduction Sheet Organisms found in first grid = 57 (Grid # [8]) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. | Grid
I.D. # | # of
Organisms | Grid
I.D. # | # of
Organisms | Grid
I.D. # | # of
Organisms | | Grid
I.D. # | # of
Organisms | |----------------|-------------------|----------------|-------------------|----------------|-------------------|------|----------------|-------------------| | 10 | 38 | \ | | | | | | | | 8 | 10 | | | | | | | | | | | | | | |
 | - | | | | | | | | Total organisms = 7-26 Total grids = 4 IF after picking, there are >121 organisms, then return picked sample to 15-30 grid tray and remove grids (per SOP) to reduce sample to 121 organisms or less. Record data below. Total # of organisms retained = _ 115 Grids removed to reduce sample to 121 organisms or fewer = Percentage of grids retained for sample (to total grids) = (final corrected # of grids (# of grids from (% of grids from original sample) original sample $\{A\}$) retained) # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME 5 | P1 | LOCATION | سيو | in wal | in + mich | /W/ | |-----------------------|--|---|--|----------------------------|---|------------| | | VERMILE | STREAM CLAS | 8 | | | | | LATLO | NG | RIVER BASIN | | | | | | STORET# | | AGENCY | <u> </u> | | | | | investigators 🦪 | _77/- | | /, - · · · · · · · · · · · · · · · · · · | | | ' | | FORM COMPLETED BY | n | DATE 11/5 I | | REASON FOR S | SURVEY | | | | | | | | Marin . | · · · | | WEATHER
CONDITIONS | Now
O storm | (heavy rain) | | | neavy rain in the las | at 7 days? | | <u></u> | □ rain (:
□ ahowens
%□ %cl | steady rain)
s (intermittent)
loud cover
ear/sunny | 9 | Air Temperature | <u>, , , , , , , , , , , , , , , , , , , </u> | | | SITE LOCATION/MAP | Draw a map of the site | e and indicate the | areas sampl | ed (or attach a pho | otograph) | | | | | • . | in | mp | | · | | · | $x = x + f \cdot x$ | <i>)</i> | | | • | | | · | | | | 6 m | | | | 1 | | | • | | v. | • • • | | · | | • | • | | | | | | Pics | > | | PF | 1 7.6 | | | | | | | 1)(| 83 | ٠. | | | 104 | - 109 | | Cor | nd 20 | 020 | | | | | | Te | mp 1 | G, P | | | | | | | · I · · · | | | • | | | | | | | | | | · · · · · | <u> </u> | | | | | STREAM | Stream Subsystem | | .1 - | Stream Type
Q Coldwator | Warrows | | | CHARACTERIZATION | Stream Origin Glacial Non-glacial montane Swamp and bog | Spring-fed
Mixture o | | Catchment Area_ | km² | | | | | | | | | | ## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATE | RSHED
JRES | 台級 | tominant Surrounding I
prest Cleom
old/Pasture Finds
gricultural Clothe | mercial
strial | Obvious sources | ome potential sources | |---------------------------|-------------------------------|--------------------------------------|--|--|---|---| | | <u> </u> | | MOSUIEI | ٠. | Local Watershed E. O None Official | rodon
Ats Heavy | | RIPAR
VECE)
(18 met | IAN
FATION
for buffer) | | cate the dominant type sees | record the | deminant master was | Herbaccous | | INSTRI
FEATU | eam
Dres | Estin | nated Reach Length nated Stream Width pling Reach Area | 100m
5_m | | antly shaded □ Shaded 25 m | | | | Area
Estin | in km³ (m²x)000)
nated Stream Depth | km²
km | Proportion of Reach
Morphology Types
O Riffle (2) % | Represented by Stream | | <u> </u> | | | cc Velocity
siweg) | _ш/вес | Channelized 🗆 Yo
Dam Present 🗀 Yo | | | LARGE | WOODY | LWD
Densi | | _m²/km² (LWI |)/ reach area) | | | AQUAT
VEGET | IC
ATION | domir | ate the dominant type are | nd record the
Reoted submer
Attached Algae | dominant species present
gent O Rooted floating | O Free floating | | WATER | QUALITY | | erature °C | aric vegatation | 2/2% | <u> </u> | | | | Dissol
pH | | - / '/
:
: | O Petroleum O Fishy Water Surface Otls | wage
Chemical
Odder
Clobs OFicks | | | | | lity | , <u></u> | Tpatidity (if not mean | sured) urbid | | SKDIME
SUBSTR | NTI/
ATTE | Odora
IZ Non
O Cher
II Othe | nal □ Sowago
micai □ Anacrobic | O Petroleum
O None | Deposits Sludge C Sawdust Relict shells | Of Paper fiber (I Sand | | <u>.</u> | i | Of Abo | ut 🗆 Slight 🗆 Modera | ite 🗅 Profi | Looking at stones white are the and confides bla | ch are not deeply embedded,
ck in color? | | INC | ORGANIC SUBS
(should ad | TRATE
dup to | COMPONENTS
100%) | | ORGANIC SUBSTRATE ((does not necessarily add | COMPONENTS | | Substrate
Type | Diamete | ٠ | % Composition by
Sampling Reach | Substrate
Type | Characteristic | % Composition in Sampling Area | | edrock . | | | £020 | Detritus | sticks, wood, coarse plant | Samping Area | | oulder | > 256 mm (10") | | 5 | 1 | materials (CPOM) | 15 | | obble | 64-256 mm (2.5° | 10") | ₩ 30 | Muck-Mud | black, very fine organic | | | iravel | 2-64 mm (0.1"-2 | 5") | 30 | 1 | (FPOM) | | | and , | 0.06-2 mm (gritty) | 1 | 10 | Marl | grey, shell fragments | | | ilt . | 0.004-0.06 mm | | - 5 | | | | | ley | < 0.004 mm (slick | c) | | | | 1 | | | | | | | <u> </u> | j. I | #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | |---------------------------|-------------------------------| | STATION # 5FP RIVERMILE | STREAM CLASS | | LATLONG | RIVER BASIN | | STORET # | AGENCY | | INVESTIGATORS | | | FORM COMPLETED BY | DATE 1/5/12 REASON FOR SURVEY | | | Habitat | | Condition | ı Category | | |--------------|---|--|---|---|---| | L | Parameter | Optimal | Suboptimal | Marginal | Poor | | Su | Epifaunal
bstrate/
railable Cover | Greater than 70% of substrate favorable for epifeumal colonization and fish cover; mix of snags, subtracted logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or responsed. | Less than 20% stable habitat, lack of habitat is obvious; substrate unstable or lacking. | | sc | ORE | | 7. V. | | | | 2. X | Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity
of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment | | g sc | ORE | | | | | | | /elocity/Depth
zime | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fust-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes
present (if fast-shallow is
missing, score lower than
if missing other regimes). | Only 2 of the 4 habitat
regimes present (if fast-
shallow or alow-shallow
are missing, score
low). | Dominated by 1 velocity/
depth regime (usually
slow-deep). | | g SCC | ORE | | | | | | 4. 5 | ediment
osition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of new gravel, send or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent. | Heavy deposits of fine
material, increased bar
development; more than
50% of the bottom
changing frequently;
pools almost absent due to
substantial sediment
deposition. | | sco | ORE | | | | | | 5. C
Stat | hannel Flow | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
capaced. | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the
available channel, and/or
riffle substrates are mostly
exposed. | Very little water in
channel and mostly
present as standing pools. | | sco | DRE | | | | | ## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | Γ | | | | | ··· | |--|--|--|--|--|--| | 1 | Habitat
Parameter | Optimal | Suboptimal | on Category | T | | İ | 6. Channel
Alteration | Channelization or | Some channelization | Marginal Channelization may be | Poor Banks shored with gabion | | | Atteration | dredging absent or
minimal; stream with
normal pattern. | present, usually in areas
of bridge abutments;
evidence of past | extensive; embankments
or shoring structures | or coment, over 80% of
the stream reach | | | | | channelization, i.e.,
dredging, (greater than | present on both banks;
and 40 to 80% of stream
reach channelized and | channelized and
disrupted. Instream | | 1 | | | past 20 yr) may be present, but recent | disrupted, | habitet greatly altered or removed entirely. | | | | | channelization is not | | | | | SCORE | | | And The And The | | | | 7. Frequency of | Occurrence of riffles relatively frequent, ratio | Occurrence of riffies infrequent; distance | Occasional riffle or bend;
bottom contours provide | Occerally all flat water or
shallow riffles; poor | | | Riffles (or bends) | of distance between riffles
divided by width of the | between riffles divided by
the width of the stream is | some habitst; distance
between tiffles divided by | habitat; distance between | | | | stream <7:1 (generally 5 to 7); variety of habitat is | between 7 to 15. | the width of the stream is
between 15 to 25. | width of the stream is a ratio of >25. | | . 4 | | key. In streams where niffles are continuous, | | | 1440 02 - 23, | | . } | · | placement of boulders or
other large, natural | | | | | To the | SCORE | obstruction is important. | | | | | | | Parks - Mary 1 | As a second second second | | | | de f | 8. Bank Stability
(score each bank) | Banks stable; evidence of
erosion or bank failure | Moderately stable;
infrequent, small areas of | Moderately unstable; 30-
60% of bank in reach has | Unstable; many croded
areas; "raw" areas | | P Sep | Notes determined | absent or minimal, little
potential for future | erosion mostly healed
over, 5-30% of bank in | areas of erosion; high
erosion potential during | frequent along straight
sections and bends: | | Parameters to be evaluated broader then serreduced | Note: determine left
or right side by
facing downstream. | problems. <5% of bank
affected. | reach has areas of erosion. | floods. | obvious bank sloughing;
60-100% of bank has | | be ey | SCORE(LB) | The second | end the second of the second production of the second t | | erosional scare. | | erato | SCORE(RB) | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | 9 | | 13 met | 9. Vegetative
Protection (scoré | More than 90% of the streambank surfaces and | 70-90% of the
streambunk surfaces | 50-70% of the
streambank surfaces | Less than 50% of the streambank streambank | | Ā | each bank) | homediate riparian zone covered by native | covered by native
vegetation, but one class | covered by vegetation;
disruption obvious; | covered by vegetation;
disruption of streambank | | | 1 | vegetation, including trees, understory shrubs, | of plants is not well-
represented; discuption | patches of bare soil or
closely cropped vegetation | vegetation is very high; | | | | or nonwoody
macrophytes, vegetative | evident but not affecting full plant growth potential | common; less than one-
half of the potential plant | removed to 5 continueters or less in | | l | | disruption through | to any great extent; more
than one-half of the | stubble beight remaining. | average subble height. | | | | minimal or not evident;
almost all plants allowed
to grow naturally. | potential plant stubble
beight remaining. | | | | | SCORE(LB) | - STAN TRANSPORTA | | with a second second second | A Comment | | | SCORE (RE) | | | | | | | 10. Riparian | Width of riparien zone
>18 meters; human | Width of riperian zone
12-18 meters; human | | Width of riparian zone <6 | | | Vegetative Zone
Width (score each | activities (i.e., parking | activities have impacted zone only minimally. | activities have impacted | meters: little or no
riparian vegetation due to | | | bank riparian zone) | lawns, or crops) have not
impacted zone. | was only managery. | zone a great deal. | htman activities. | | | SCORE (LB) | | 1 mm m | | | | | SCORE (RB) | | | | | | | | | | | | Total Score | Station | SFP1A | |---------|-------| | | | | EPT Taxa | 3.00 | |----------------------|--------| | Total Taxa EP | 5.00 | | Abundance | 117.00 | | Total PT | 39.00 | | Total Chironomidae | 77.00 | | Total Scrapers | 0.00 | | Total Ephemeroptera | 0.00 | | Total Hydropsychidae | 19.00 | | | HBI (Family) | 5.05 | | |---|--------------------------|--------|--| | | | 591.00 | | | | FFG # | 26 | | | ŀ | | 82.05 | | | | % Top two dominant taxa | | | | | t Taxa # | 96.00 | | | | Two Dominant Tax | | | | | | 65.81 | | | | % Chironomidae | | | | ı | | 0.00 | | | | % Scrapers | | | | ı | | 17.09 | | | | % PT less Hydropsychidae | | | | | | 0.00 | | | | | | | | | e | | | | | % Ephemeropter | | | SED1A | ASCI Metrics (Truncated) | 22.73 | 27.27 | 0.00 | 48.02 | 0.00 | 34.19 | 25.94 | 72.78 | |--|----------------|--------------------|-----------|--------------------------------|------------------|----------------------|----------------------|-------------------------| | VASCI Metrics vs. Standard VASCI Metrics (Truncated) | 22.73 | 77.27 | 0.00 | 48.02 | 0.00 | 34.19 | 25.94 | 72.78 | | | Number of Taxa | Number of EPT Taxa | Percent E | Percent PT Less Hydropsychidae | Percent Scrapers | Percent Chironomidae | Percent Two Dominant | Hilsenhoff Biotic Index | | 28 | 28.86 | |-------------|---------| | Final VASCI | v VASCI | ### Benthic Macroinvertebrate Laboratory Bench Sheet | Station ID: | SFPIA | Sample Subsorted by: | WRB | Date Subsorted: | | | |------------------|-------------|-----------------------------------|--|----------------------------|--|-------------------| | StationName: | | # of Grids subsorted: | | | | Ī | | Date Sampled: | 11/05/12/17 | 3 Total # of Subsorted Insects: | | | · | | | Sampling Method: | | Sample Identified by: | | Dete
Identified: | and the second second second | | | | | TAXON | # | of larvae | Total # of
Organisms | # to
Ref.Coll. | | 1 | Chiconom | done | LIKE THE | HAT LAST IN LAST SHEET WAS | 77 |] | | 2 | Capmidae | | LANT DIV | <u> </u> | 9 | | | 3 | Hydropsiya | nda Cheumatopeach | MUTHIN | | IS | | | 4 | .0 1 | nda Cheumatopeyere
Ceratopsych | 114 | | 4 | | | 5 | Simuluda | <u>e</u> | <u> </u> | | 1 | | | 6 · | Leuctrida | Levotra | UKUKI | | 11 | | | 7 | | | | | ************************************** | | | 8 | | | | | | | | 9 | | | | | | 1 | | 10 | | · | | | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | | | | | | | | 14 | | | · . | | | T-11-11 | | 15 | | | | | · | " | | 16 | | | | | | , | | 17 | ······ | | | | · | | | 18 | · | | | | | | | 19 | | | | | | | | 20 | · | | | | | | | 21 | · | | | | | | | 22 | | | | | | | | 22
23 | | | | | | | | 24 | | | | | | | | 25 | | | | | | | | | | TOTALS | | | 117 | | #### Sub-sample and Sample Reduction (per SOP) ### Sub-sample and Sample Reduction Sheet Organisms found in first grid = 3+ (Grid # 27) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. Total organisms = 190 Total grids = 4 \underline{IF} after picking, there are >121 organisms, then return picked sample to 15-30 grid tray and remove grids (per SOP) to reduce sample to 121 organisms or less. Record data below. Total # of organisms retained = 117 Grids removed to reduce sample to 121 organisms or fewer = 5 Percentage of grids retained for sample (to total grids) = (# of grids from original sample {A}) (% of grids retained) (final corrected # of grids from original sample) # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SECET (FRONT) | STREAM NAME 5F | Pound | LOCATION | Rom | a Crossing | nt Ponce | |-----------------------|---|----------------------------------|-----------------|---------------------------------------|---------------------------------------| | | VERMILE | STREAM CLA | SS | | | | | DNGDNG | RIVER BASIN | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | STORET# | | AGENCY | | | | | INVESTIGATORS O | LTM | | | - | | | FORM COMPLETED BY | on | DATE 1/ | 5/1/2 | REASON FOR SURVE | . · · | | | | | | | | | WEATHER
CONDITIONS | Now | | Past 24 | Has there been a heavy ra | ain in the last 7 days? | | CONDITIONS | Cl storm | (beavy rain) | | Air Temperature | | | | C rain (s | steady rain)
s (intermittent) | 0 | Other Comperature | - | | | , %□ %d | loud cover
ear/suony | <u>"</u> " | | | | SITE LOCATION/MAP | | | to areas seems | iled (or attach a photograp | h) | | | map or me at | marcate t | = and = attl | штага и риогодияр | | | | | | | | | | | 1 | | | Contract of | | | | <u>l</u> | $t^{-\frac{1}{2}}$ | | | | | | $1 + 10^{\circ}$ | | • . | | | | | 1 + | \subseteq | • | | | | | 1 / | ~ | | | | | | $\mathbf{I}_{\mathbf{i}}$ | | | | | | | 118- | -112 | are. | _ 1 | 1 6 7 | | | | • | | DH | + 016 | | | | | 7 grā / | I_{\sim} | <u> </u> | | | 15.1 | | • | 137. |) 9.0 | | | · · · · · · · · · · · · · · · · · · · | ٠ | | 150 | | | ., | ١ | | | Com. | B 321-1 | | i | | | | WY(| R) (1060) | | 1 | | | | | , , , , , , , , , , , , , , , , , , , | | ' | | | | OM | Y 12,4 | | | ٠. | | | | 11、原源17、19 | | · | | | | | *** | | | | 1 | | .~m∦ : | | | | · · | | | | , | | | 1. | • | ı | | | | STREAM | Stream Subsystem | _ | | Stream Type | | | CHARACTERIZATION | Stream Subsystem Perennial Clinton | | ial | Stream Type Coldwater C Warmw | : | | | Stream Origin O Glacial O Non-glacial montane | O Spring-fe | rd ^v | Catchment Area | km² | | | O Non-glacial montane O Swamp and bog | Spring-fr
Mixture
Other | or origins | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | | - | | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | | | | and Daw | anduse
mercial | Local Watershed M | S Pollution | | | |---------------------------|---|----------------------------|---|--|---|--------------------------------|--|--| | ľ | WATERSHED FEATURES Protes Comm Field/Pasture Cl Indust Agricultural Other | | | | | ome potential sources | | | | | | Y | | | Local Water and E. | ite Ci Heavy | | | | ECPAR
VEGET
(18 met | IAN
FATION
er buffer) | | cate the dominant type
ocs
mant species present | shrubs | dominant species present | | | | | INSTRI
FEATU | eam
Tres | Estin | nated Stream Width | <i>®0</i> <u> </u> | Canepy Cover | rtty shaded □ Shaded
m | | | | | | Area | ing Reach Area
in km² (m²x1000) | m²
km² | Proportion of Reach | Represented by Stream | | | | | | | · | т | C Rime Z S % | | | | | ļ | 0 0 | | ce Velocity | _ш/sec | Channelized 🗆 Y | cs ZINo | | | | <u> </u> | | <u> </u> | , | | Dem Present 🗆 Y | •• OM | | | | LARGE | WOODY | LWD | m | | <u> </u> | | | | | | | Denst | | m³/km² (LW) | / reach area) | | | | | AQUAT | 1C | India | · | | | · | | | | VEGETA | ATION | Roc | sted emergent | ed record the
Rooted submor
Affached Algae | dominant species present
gent | O Free floating | | | | | | 0 | unit species present | Allached Algae | | | | | | , | | | · . | | | | | | | | | * OF ILO | n or the reach with aqu | of the reach with aquatic vegetation 2/2 % | | | | | | WAIER | QUALITY | Specif | erature° C ic Conductance ved Oxygen | _ | Water Odors Z Normal/None | | | | | ! '
! | | рН | lity | | | | | | | | | | strument Used | · | Turbidity (if not mean O'Clear U'Slightly to O'paque U Stamed | eured) urbid | | | | SEDIME:
SUBSTRA | NT/
ATE | Offers
2 Nove
1 Oben | nal Sewage
nical Anascobic | Petroleum
O None | troloum | | | | | | | On
DAbsect | nt 🗆 Slight 🕒 Modera | ec 🔾 Profi | Are the underfides by | Ch are not deen be see badded. | | | | ïNC | ORGANIC SUBS
(should ad | TRATE
d up to 1 | COMPONENTS
190%) | | ORGANIC SUBSTRATE (| COMPONENTS | | | | Substrate
Type | Diamete | r | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in Sampling Area | | | | Bedrock | | , | | Detritus | sticks, wood, coarse plant | | | | | Boulder | > 256 mm (10") | | | 1 | materials (CPOM) | 70 | | | | Cobble | 64-256 mm (2.5° | 10") | 50 | Muck-Mud | black, very fine orespic | | | | | | 2-64 mm (0.1"-2. | 5") | 30 | 1 | black, very fine organic
(FPOM) | | | | | Tavel | | | | | | | | | | | 0.06-2 uun (gritty) | - (vii 202) | | | | | | | | Sand | _ | | 10 | Marl | grey, shell fragments | | | | #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | |--------------------------|-------------------------------| | station# SFPIA rivermile | STREAM CLASS | | LATLONG | RIVER BASIN | | STORET # | AGENCY | | INVESTIGATORS | | | FORM COMPLETED BY | DATE 1/5/12 REASON FOR SURVEY | | | TIME AM (PM) | | | Habitat | | Condition | : Category | | |--|---|--|--|---|--| | ł | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifaunal
Substrate/
Available Cover | Oreater than 70% of
substrate favorable for
opifiumal colonization and
fish cover, mix of snags,
submerged logs, undercut
banks, cobble or other
stable habitat and at stage | adequate habitat for
maintenance of
populations; presence of
additional substrate in the | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 20% stable
habitet; lack of habitet is
obvious; substrate
unstable or lacking. | | | | to allow full colonization
potential (i.e., logs/snags
that are <u>not</u> new fall and
not transient). | form of newfall, but not
yet prepared for
colonization (may rate at
high end of scale). | | | | | SCORE | | | | | | mpling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | GraveL.cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | | | of piche space. | | | | | 3 | SCORE | 4.24. Bullian 1983 Fe | | 1924 - 1 19 <u>11</u> | | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth
Regime | All four velocity/depth
regimes present (slow-
deep, slow-shallow, fast-
deep, fast-shallow).
(Slow is < 0.3 m/s, deep is
> 0.5 m.) | Only 3 of the 4 regimes
present (if first shallow is
missing, score lower than
if missing other regimes). | Only 2 of the 4 habitat
regimes present (if fast-
shallow or slow-shallow
are missing, score low). | Dominated by I velocity/
depth regime (usually
slow-deep). | | 2 | SCORE | | | | 14.2 | | Pr | 4. Sediment
Deposition | Little or no enlargement
of islands or
point burs
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of | Heavy deposits of fine material, increased bur development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment | | | | | | pools prevalent. | deposition. | | | SCORE | | | | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the
available channel; or
<25% of channel
substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in channel and mostly present as standing pools. | | | SCORE | | | | | ## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | | Habitat | | Conditi | on Category | | |--|--|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Роог | | | 6. Channel
Alteration | Chamelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not | Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 30% of stream reach channelized and disrupted. | Banks shored with gas or cornent; over 80% the stream reach channelized and disrupted. Instream habitat greatly aftered removed entirely. | | | SCOPE | anga ika sa | present. | * | | | | SCORE | ilian ya da walio da kara wa kata k | | | | | | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where | Occurrence of riffics infrequent; dishance between riffics divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide
some habitat; distance
between riffles divided by
the width of the stream is
between 15 to 25. | Generally all flat water
shallow riffles; poor
habitat; distance between | | opitag reach | | riffles are continuous,
placement of boulders or
other large, natural
obstruction is important. | | | | | 1 680 | SCORE | | | Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | rarameters to be evaluated broader than sampling reach | 8. Bank Stability
(score each bank)
Note: determine left
or right side by
facing downstream. | Banks stable; evidence of crossion or bank failure absent or minimal; little potential for future problems. <5% of bank affected. | Moderately stable; infrequent, small areas of erosion mostly healed over, 5-30% of bank in reach has areas of erosion. | Moderately unstable; 30-60% of bank in reach has areas of erosion; high exosion potential during floods. | Unstable; many croded
areas; "raw" areas
frequent along straight
sections and bends;
obvious bank sloughin
60-100% of bank has | | a co os es | SCORE(LB)
SCORE(RB) | | | | crosional scars. | | | 9. Vegetative Protection (ecore each bank) | More than 90% of the streambank surfaces and humediate riperian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | streambank surfaces covered by native vegetation, but one class of plants is not well-represented, disruption evident but not affecting full plant growth potential to any great extent, more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-balf of the potential plant stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been removed to 5 centimeters or less in average shibble height. | | | —· / | | | The state of s | | | 1
V
b | O. Riparian Vegetative Zone Vidth (score cach sank riparian zone) CORE(LB) | activities (i.e., parking | Width of riparism zone 12-18 meters; human activities have impacted zone only minimally. | Width of riperian zone 6-
12 meters; human
activities have impacted
zone a great deal. | Width of riparian zone of meters: little or no riparian vegetation due a human activities, | | \$ | CORE (RB) | 55.5 | | The second second | | | | Score | | The man the committee of the | | The same of the same | | uc | | |---------|------| | Station | SFP2 | | 27.00 0.00 0.00 43.00 60.00 104.00 6.00 104.00 6.00 | Total Hydropsychidae | Total Ephemeroptera | Total Scrapers | Total Chironomidae | Total PT | Abundance | Total Taxa | EPT Taxa | |---|----------------------|---------------------|----------------|--------------------|----------|-----------|------------|----------| | | | | | 43.00 | 00'09 | | | 4.00 | | % Ephemeroptera | % PT less Hydropsychidae | % Scrapers | % Chironomidae | Two Dominant Taxa # | Two Dominant Taxa # %Top two dominant taxa FFG # | HB | l (Family) | |-----------------|--------------------------|------------|----------------|---------------------|--|--------|------------| | 0.0 | 31.73 | 00'0 | 41.35 | 00.99 | 63.46 | 464.00 | 4.46 | | SFP2 | | | | | | | | | Metrics (Truncated) | 27.27 | 36.36 | 0.00 | 89.13 | 0.00 | 58.65 | 52.80 | 81.45 | |--|----------------|--------------------|-----------|--------------------------------|------------------|----------------------|----------------------|-------------------------| | VASCI Metrics vs. Standard VASCI Metrics (Truncated) | 27.27 | 36.36 | 0.00 | 89.13 | 0.00 | 58.65 | 52.80 | 81.45 | | | Number of Taxa | Number of EPT Taxa | Percent E | Percent PT Less Hydropsychidae | Percent Scrapers | Percent Chironomidae | Percent Two Dominant | Hilsenhoff Biotic Index | | Final VASCI | 7 | |-------------|----------| | VASCI | 43.21 | ### Benthic Macroinvertebrate Laboratory Bench Sheet | Station ID: | SFP-Z | Sample Subsorted by: | 1 | Date Subsorted: | <u> </u> | | |------------------|----------|-------------------------------|-----------------|--|-------------------------|--| | StationName: | | # of Grids subsorted: | | · · · · · · · · · · · · · · · · · · · | | ľ | | Date Sampled: | 1 1 | Total # of Subscried Insects: | | | |
| | Sampling Method: | | Sample Identified by: | | Date Identified: | | | | | | | | | | | | 4 | | TAXON | # of | larvae | Total # of
Organisms | # to
Ref.Coll. | | 1 | Topolida | <u>e</u> | | | 1 | , | | 2 | Rhyaco | philodae Physeophila | i | | | | | 3 | 1 | | UKHTIIN | | 14 | | | 4 | J 1 | Chematopsyche | | ., , ','.,,,",'' | 13 | | | 5 | Chironor | nidae | | W WING CHON | 43 | | | 6 | | engidae Staphoptone | LAT INI | | 9 | | | 7 | Caprudae | | HOTELETHAN LINE | N | 2.3 | | | 8 | | | | | | | | 9 | , | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 10 | | , | | ······································ | - | | | 11 | | , | | | | | | 12 | , | ' | | | | | | 13 | | | | | | ····. | | 14 | | | | | | 1 | | 15 : . | | | | , ' | - | " " | | 16 | | | · . | | | | | 17 | | | | | | | | 18 | | | | | | | | 19 | | | | | | , | | 20 | | | | | | | | 21 | | | | | | | | 22 | | | | | | | | 23 | | · · | | | | | | 24 | | | | ٠. | | • | | 25 | | | "" | | | | | | | TOTALS | | | 104 | | #### Sub-sample and Sample Reduction (per SOP) | 1 | Sub-samp | le | and | Sam | ple | Red | luction | Sheet | |---|----------|----|-----|-----|-----|-----|---------|-------| | | | | | | | | | | Organisms found in first grid = $\frac{2.8}{}$ (Grid # $\frac{30}{}$) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | |-------------------------------|-------------------------------|-------------------------------|-------------------------------| | 22 32
21 09
26 35 | | | | | | - | | | | | | | | | | | | | | | | | | Total organisms = 104 Total grids = 4 \underline{IF} after picking, there are >121 organisms, then return picked sample to 15-30 grid tray and remove grids (per SOP) to reduce sample to 121 organisms or less. Record data below. (# of grids from original sample {A}) (% of grids retained) (final corrected # of grids from original sample) STP-2 # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME SE | Pariel | LOCATION (| com bolow | conf lat creek | |----------------------------|---|------------------------------------|--|-----------------------------| | STATION# SFP Z RI | | STREAM CLASS | | | | | NG | RIVER BASIN | · | | | STORET# | 1,4 | AGENCY | | | | INVESTIGATORS | 2 JM | | | <u> </u> | | FORM COMPLETED BY | on | DATE //5/AM | REASON FOR SUI | RVEY | | | | | | | | WEATHER
CONDITIONS | Now | Past 2 | 4 Handhere been a bes | vy rain in the last 7 days? | | COMPATIONS | g storm | (beavy rain) | Air Temperature | • °c | | · . | D shower | (steady rain) | Other | | | | % — / % c | cioud cover 🚨 | % VIAG | | | SITE LOCATION/MAP | | | zampled (or attach a photo | парр) | | | | | | · | | | 0 | et los | on man | $\boldsymbol{\rho}$ | | | | | | | | | | | | | | | 1. " | | | | | | $\bigcap_{i \in \mathcal{I}_i} \mathcal{I}_i$ | • | | | | | Pics | > | | | | | 1 | · | | | | | | | | _ | | | । ४। - ४ | φ | NH | 8.4 | | | Tah - | | 7 T | | | | Thin | E ' . | · · / _ | an | | | | | $ \sim$ \sim $+$ $+$ $+$ $+$ $+$ $+$ $+$ |) -1.0 | | | | | | | | 1 | • | | Com | 1 1947 | | n - 1 | • • • • • • | | , ÇON | α α | | | | | | _ | | | | | 101 | W 1711 | | | | | , - , | 1 -14 | | | | | • | | | | | | • | | | | | | | | | STREAM
CHARACTERIZATION | Stream Subsystem Perennial into | ermittent 🗅 Tidal 🚿 | Stream Type | ermwater | | COMMACTERIZATION | Stream Origin | • • | Catchment Area | kan ² | | 1 | ☐ Glacial
☐ Non-glacial mentane | O Spring-fed
Mixture of origins | | | | | Swamp and bog | 6 Other | - . | | | | <u> </u> | | | | ## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATE | ershed
Ures | | lominant Surrounding I
west I Com
eld/Pasture I Indu
gricultural I Othe
sadential | mercial | Local Watershed Management of Solutions cources Local Watershed Es | ome potential sources | |---------------------------------------|-------------------------------------|--|---|--|---|---| | · | | | | | □ None Modera | t 🗅 Heavy | | VEGE
(18 mc | HAN
TATION
ter buffer) | dom | eate the dominant type s
ces
mant species present | record the | dominant species present | Herbaccous | | INSTR
FEATU | | | nated Reach Longth
nated Stream Width | 100m | | arthy shaded 🖸 Shaded | | 1 | | Samp | pling Reach Area | m² | High Water Mark | <u>/ (/-2</u> m | | 1 | | Area | In km² (m²x1000) | km² | Proportion of Reach
Morphology Types | Represented by Stream ORum_35_% | | | | Estin | nated Stream Depth | n | Ci Riffie 66 | □Run_ <u>35</u> % | | | | Sarts | ice Velocity
alweg) | _in/sec | | * Mio ROB | | LARGE | E WOODY | LWD | m² | · · · · | | 2 110 10000 | | DEBRI | s | | | m²/km² (T.XVI |)/ reach area) | • | | AQUAT | пс | India | | · | | · · · · · · · · · · · · · · · · · · · | | | ATION | O Rox | xed emergent (1) thing Aigne (1) | nd record the
Rooted submer
Attached Algae | dominant species present
gent U Rooted floating | ☐ Free floating | | Į | . ' | | ant species present | | | | | | | R . | on of the reach with aqu | atic vegetation | 45% | | | WATER | QUALITY | | erature °C | | | | | | • | Specif | le Conductanco | - | Water Odors 2 Normal/None C Sev 2 Petroleum 3 Fishy | vage
O'Chemical
O'Cher | | · | | 16 X 8X | lity | • | Water Surface Offs O Shok O Shoen (None O Other | □ Çlobs □ Plecks | | · · · · · · · · · · · · · · · · · · · | | | atroment Used | <u> </u> | Tarbidity (if not mess Clear Slightly to Opsque O Stained | ured) whid □ Turbid □ Other | | SED)ME
SUBSTR | | Ostors
21 Norm
12 Chen
13 Other | nical Anacrobic | O Petroleum
O None | Deposits
☐ Sludge ☐ Sawdust
☐ Relict shells | Yother Super Wishard | | · | | Off
OrAbea | ut □ Slight □ Moders | ate 🚨 Profi | Looking at stones whise are the undepdides blacked by Yes No | th are not deeply embedded,
ck in color? | | INC | ORGANIC SUBS | T1D A T1D | COMPONENTS | | | | | | (should ad | id up to | 100%) | 1 | ORGANIC SUBSTRATE C
(does not necessarily add | OMPONENTS up to 100%) | | Substrate
Type | Diamete | r | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in Sampling Ares | | Bedrock | | | 5 | Detritus | sticks, wood, coarse plant | | | Boulder | > 256 mm (10") | | 10 | 1 | materials (CPOM) | 15 | | | | 105 | 50 | Marsh Marsh | blode vi- C | | | Cobble | 64-256 mm (2.5° | -10") | 5 <i>0</i> | Muck-Mud | DUNCK, YOUY DING OTRAINIC | | | Cobble
Gravel | 64-256 mm (2.5°
2-64 mm (0.1°-2, | | 30 | MINIK-MINI | black, very fine organic
(FPOM) | | | Gravel | | 5) | 30 | Marl | | | | | 2-64 mm (0.1*-2. | 5) | 30 | | (FPOM) grey, shell fragments | | #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH CRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | |--------------------------|---------------------------------| | STATION# 4FD 2 RIVERMILE | STREAM CLASS | | LATLONG | RIVER BASIN | | STORET# | AGENCY | | INVESTIGATORS | | | FORM COMPLETED BY | DATE 11/5/1 Z REASON FOR SURVEY | | Ţ. | Habitat | | Condition | n Category | | |--|--------------------------------------|---|---|--|--| | 1 | Parameter | Optimal | Suboptimal | Marginal | Poor | | | Epifaunal Substrate/ Available Cover | Greater than 70% of
substrate favorable for
epifamal colonization and
fish cover, unix of snags,
submerged logs, undercut
banks, cobble or officer | adequate habitat for
maintenance of
populations; presence of | 20-40% mix of stable
habitat; habitat
availability less than
desirable; substrate
frequently disturbed or
respoyed. | Less than 20% stable
habitat; lack of habitat is
obvious; substrate
nostable or lacking. | | | | stable habitat and at stage
to allow full colonization
potential (i.e., loga/snags
that are <u>not</u> new fall and
not transient). | additional substrate in the
fram of newfall, but not
yet prepared for
colonization (may rate at
high end of scale), | | | | | SCORE | | | | | | ampling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by froe
sediment. Layering of
cobble provides diversity | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | Į. | SCORE | of niche space. | | | | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth
Regime | All four velocity/depth regimes present (slow-deep, slow-shallow), first-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the
4 regimes
present (if fast-shallow is
missing, score lower than
if missing other regimes). | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low). | Dominated by 1 velocity/
depth regime (usually
slow-deep). | | act
act | SCORE | | | | | | ď | 4. Sediment
Deposition | Little or no enlargement
of ialands or point bens
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar
formation, mostly from
gravel, send or fine
sediment; 5-30% of the
bottom affected; slight
deposition in pools. | Moderate deposition of
new gravel, and or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of | Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition. | | | SCORE | | | pools prevalent. | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in channel and mostly present as standing pools. | | | SCORE | | | | | ## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | Habitat | | Condit | lon Category | | |--|--|--|--|---| | Parameter | Optimal | Suboptimal | Marginal | Poor | | 6. Channel
Alteration | Channelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past chameization, i.e., dredging, (greater than past 20 yr) may be present, but feech channelization is not paracut. | Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabi
or coment; over 80% of
the stream reach
channelized and
disrepted. Instream
habitat greatly altered o
removed entirely. | | SCORE | | | | | | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous. | Occurrence of riffies infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide | Generally all flat water shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. | | SCORE | placement of boulders or
other large, natural
otherspection is important. | | | | | BCOKE | Table 10 Carlotte | | | | | 8. Bank Stability
(score each bank) Note: determine left
or right side by
facing downstream. | Banks stable; evidence of crosion or bank failure abscut or minimal; little potential for future problems, <5% of bank affected. | Moderately stable;
infrequent, small areas of
crosion mostly healed
over. 5-30% of bank in
reach has areas of crosion. | Moderately unstable; 30-
60% of bank in reach has
areas of erosion; high
erosion potential during
floods. | Unstable; many croded
areas; "raw" areas
frequent along straight
acctions and bends;
obvious bank alonghing;
60-100% of bank has | | SCORE (LB)
SCORE (RB) | | | | crosional scars. | | 9. Vegetative
Protection (score
each bank) | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bere soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining. | Less than 50% of the streambenk surfaces covered by vegetation; disruption of streambenk vegetation is very high; vegetation has been removed to 5 contimeters or less in average stubble height. | | SCORE (LB)
SCORE (RB) | | | Antig Conservation (Conservation of the Conservation Conser | | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | >18 maters; human
activities (i.e., parking | Width of riperion zone 12-18 meters; human activities have impacted zone only minimally. | 12 motors; human
activities have impacted | Width of riparian zone <6
meters: little or no
riparian vegetation due to
human activities. | | SCORE(LB)
SCORE(RB) | | | | | | Yotal | SAAMA | | |-------|-------|--| | Station | 7 | ŕ | |---------|---|---| | Total Scrapers Total Chironomidae Total PT Abundance Total Taxa EPT Taxa | 7.00 20.00 51.00 109.00 15.00 8.00 | | |--|--|--| | Total Chironomidae | .00 | | | | 12.00 | | | Total Hydropsychidae | 9.00 | | | % Ephemeroptera | % PT less Hydropsychidae | % Scrapers | % Chironomidae | Two Dominant Taxa # | wo Dominant Taxa # % Top two dominant taxa | FFG # | HBI (Family) | |--------------------------------|----------------------------|---------------------------|----------------|---------------------|--|--------|--------------| | 11.01 | 1 38.53 | 6.42 | 18.35 | 46.00 | 42.20 | 378.00 | 3.47 | | | | | | | | | | | 3CI | | | | | | | | | | VASCI Metrics vs. Standard | VASCI Metrics (Truncated) | | | | | | | Number of Taxa | 68.18 | | | | | | | | Number of EPT Taxa | 72.73 | | | | | | | | Percent E | 17.96 | | | | | | | | Percent PT Less Hydropsychidae | 108.24 | 100.00 | | | | | | | Percent Scrapers | 12.45 | | | | | | | | Percent Chironomidae | 81.65 | | | | | | | | Percent Two Dominant | 83.52 | | | | | | | | Hilsenhoff Biotic Index | 90.96 | | | | | | | ### Benthic Macroinvertebrate Laboratory Bench Sheet | Station ID: | <u> </u> | Sample Subsorted by: | 1 | Date Subsorted | | · | |------------------|---------------------------------------|--|--|---------------------------------------|-------------------------|-----------------------| | StationName: | | # of Grids subsorted: | | TORKE CORSOLIEU | | · · | | Date Sampled: | | Total # of Subsorted Insects: | | | | <u> </u> | | Sampling Method: | | . Sample Identified by: | | Date Identified: | | | | 224 2 7 2 44 |
<u> </u> | | <u> </u> | 1 | | | | CK | | TAXON | # of | iarvae | Total # of
Organisms | # to
Ref.Col | | 1 | Tipolidae | <u>. </u> | E MINI | | 8 | | | 2 | Chironomi | | TH MUM IN | · · · · · · · · · · · · · · · · · · · | 20 | - | | 3_ | Elmidae | | III | | 3 | | | 4 ' | Simulada | · _ | iur) | | 6 | | | 5 | Psepheni | · · · · · · · · · · · · · · · · · · · | L | | - | | | 6 | Philo cotou | adae Commarco | M 1 | | 6 | | | 7 | Hentasami | Maccafeithum | ()) | | 2 | | | B | Butidae | Acentrella/Bactis | | | 7 | | | 9 | Hydropsy | unda Chemitosij | | | 4 | | | 10 | 3 () | 1.7 | W | · · · · · · · · · · · · · · · · · · · | 5 | | | 11 | Levetrida | | THE THE THE THE | ilk i | 26 | <u>'</u> | | 12 | Caprildae | | <u>istanistani</u>
Drin | K) L | 8 | ··········· | | 3 | Ephemerell | |)\
)\ | | 2 | | | 4 | | er Nemavia | II | | 2 | | | 5 | Collembol | | Ur(ii | | . 7 | : , ,i , . | | 6 | Asellidae | . / . | <u></u> | | | | | 7 | · | | | | | | | 8 | | / | | | | | | 9 | | | ······································ | | <u> </u> | | | 0 | | | | · | | | | 1 | | | _ . , . . | | | | | 2 | - | | · · · | | | ··· | | 3 | | | | <u>-</u> | | | | 4 | · · · · · · · · · · · · · · · · · · · | *************************************** | 1 | | | | | 5 | - | | | | | | | | | TOTALS | | | 109 | | ### Sub-sample and Sample Reduction (per SOP) | Su | b-s | am | ple | and | Sam | ple | Rec | lucti | ОП | Shee | ŧ | |----|-----|----|-----|-----|-----|-----|-----|-------|----|------|---| Organisms found in first grid = $\frac{45}{100}$ (Grid # $\frac{7}{100}$) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. | Grid # of
I.D. # Organisms | Grid # of
LD, # Organisms | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | |---|---|---|--| | 9 05
 17
 29
 9 18 | | | | | Total organisms = | 09 Total | grids = 5 | | | IF after picking, there remove grids (per SO) Total # of organisms Grids removed to redu Percentage of grids re | P) to reduce sample to retained = 109 are sample to 121 org | s, then return picked sample to 121 organisms or less. Re ganisms or fewer = total grids) = | e to 15-30 grid tray and
ecord data below.
— | (final corrected # of grids from original sample) (# of grids from original sample (A)) (% of grids retained) 50-1 # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME SALE | + Creek | LOCATION 150 m US CONS ROOFCY | |-----------------------|---------------------|---| | | ERMILE | STREAM CLASS | | LAT LO | VG | RIVER BASIN | | STORET# | | AGENCY | | investigators On | - OM- | | | FORM COMPLETED BY | on | DATE V 5 11 Z AM PM REASON FOR SURVEY | | | | | | WEATHER
CONDITIONS | Now | Past 24 Has there been a heavy rain in the last 7 days? hours \square \text{No} \square \text{No} | | | O ston | m (heavy rain) C Air Temperature \(\sum_{\circ}^{\circ} \) C | | | C) abowe | ers (intermittent) | | | | clear/sounty D | | SITE LOCATION/MAP | Draw a map of the s | nite and indicate the areas sampled (or situch a photograph) | | | at | t los, on map | | | | d / | | | | +1 Cray fish | | | | 0.0 | | Í | | | | | • | | | | | 81 | | | C. C. | ρ_H | | | Pic | S | | | | 00 9.2 | | | ×7-9 | 7. | | | 0, | | | | Tohoma | A 1101 | | | Thisia | - 10P (gra) | | | | Temp 9.2 | | | | Temp 9.2 | | | | 1emp 1.2 | | | | | | | | | Spring-fod Mixture of origins C) Other Stream Subsystem Perennial Intermittent Cl Tidal Stream Origin Glacial Non-glacial montane Swamp and bog STREAM CHARACTERIZATION Warmwater Catchment Area # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATE | ershed
Ures | | tominant Surrounding rest Con- cld/Pasture Inch gricultural Och | Landuse
uncarrial
petrial
er | U Obvious sources | ome potential sources | |-------------------------|-------------------------------|---------------------------------------|---|---------------------------------------|---|---| | | | D/R | aidential | - | Local Wateraled E | resion
atc D Heavy | | RIPAR
VEGE
(18 me | IIAN
TATION
ter buffer) | Ind
dom | ste the dominant type
bes
mant species present | oud record the
chrubs | dominant species present | Herbaceous | | INSTR
FEAT | | Kstir | nated Reach Longth nated Strang Width Ding Reach Area | Z, <u>5</u> _m | Caropy Cover
Fatty open. Q P
High Water Mark | antly shaded O Shaded | | | ·
 | Area
Estin | in km² (m²x)000)
nated Stream Depth | m²km²n | Proportion of Reac
Morphology Types
O Riffic 62 % | Represented by Stream | | | | Surfa
(at th | ce Velocity
siweg) | _m/sec | Channelized O Y Dam Present O Y | es ANO LNB | | DEBRI | S WOODY | LWD
Denat | ty of LWD | m²/km² (LWI | | - PNO Roal | | AQUAT
VEGET | IC
ATION | | | | dominant species present | O Free floating | | | . ' | domin | ant species present
n of the reach with aqu | <u> </u> | | | | WA'TER | QUALITY | Temp
Specifi | orsture ° C ic Conductance /ed Oxygen | | Water Odors | wago
O Onemical
O Other | | - | | pH
Turbid | | | Water Surface Office Shoon None Other | | | <u>,_</u> | | WQ In | strument Used | | Turbidity (if not mean
of Clear Slightly to
Opeque O Staned | sured)
urbid Crushid
Crother | | SEDIME
SUBSTR | | Oglers
D Norm
C Ober
D Other | ucal D Armerobie | O Petroleum
O None | | O Paper tiber Sand | | <u>.</u> | | Offis
D'Absor | st O Slight O Moders | ste □ Profi | Looking at stones white are the undersides blue of No. | ch are not deeply embedded,
ck in color? | | INC | ORGANIC SUBS | TRATE (
ld up to 1 | COMPONENTS
90%) | | ORGANIC SUBSTRATE (| COMPONENTS | | Substrate
Type | Diameter | r | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in Sampling Area | | Bedrock | | | | Detrins | sticks, wood, coarse plant
materials (CPOM) | | | Soulder | > 256 mm (10") | | 5 | <u>l</u> | materials (CPOM) | 30 | | Cobble | 64-256 mm (2.5" | | 40 | Muck-Mud | black, very fine organic | | | Tavel | 2-64 mm (0.1"-2, | | Чо | <u> </u> | (FPOM) | | | and | 0.06-2mm (gritty) | | 10 | Marl | grey, shell fragments | | | Silt | 0.004-0,06 mm | | 5 | | | | | lay | < 0.004 mm (slick | 0 | | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | |-------------------------|-------------------------------| | STATION# SC RIVERMILE | STREAM CLASS | | LATLONG | RIVER BASIN | | STORET# | AGENCY | | INVESTIGATORE | | | FORM COMPLETED BY | DATE 175/ Z REASON FOR SURVEY | | · [| Habitat | | Condition | n Category | | |--|---|--|---|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifaunai
Substrate/
Available Cover | Creater than 70% of substrate favorable for epifamual colonization and fish cover; neix of snags, submerged logs, underent banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking. | | 1 | SCORE | | | | W. | | Parameters to be evaluated in sampling reach | 2. Embeddedness | Chavol, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity
of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
acdiment. | Cravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | T page | SCORE | | | | | | eters to be evalue | 3. Velocity/Depth
Regime | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other
regimes). | Only 2 of the 4 habitat
regimes present (if fast-
shallow or slow-shallow
are missing, score low). | Dominated by I velocity/ depth regime (usually slow-deep). | | E E | SCORE | | | | | | A. | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar
formation, mostly from
gravel, sand or fine
sediment; 5-30% of the
bottom affected; slight
deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions, | Heavy deposits of fine
material, increased bar
development; more than
50% of the bottom
changing frequently;
pools almost absent due to | | 1 | | | | constrictions, and bends;
moderate deposition of
pools provalent. | substantial sediment
deposition. | | | SCORE | and the second second | | house treasure | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the
available channel, or
<25% of channel
substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in channel and mostly present as standing pools. | | | SCORE | | | | | | | Habitat | | Condit | ion Category | | |--|--|--|---|---|---| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 6. Channel
Alteration | Chamelization or dredging absent or minimal; stream with normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be procest, but recent channelization is not pastent. | Chamelization may be extensive; embaukments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabior
or cement, over 80% of
the stream reach
channelized and
disrupted. Instream
habitat greatly altexed or
removed entirely. | | | SCORE | | | <u> </u> | | | ach | 7. Frequency of
Riffies (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide
some habitat; distance
between riffles divided by
the width of the stream is
between 15 to 25. | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. | | iling re | | placement of boulders or
other large, natural
obstruction is important | | | | | ğ | SCORE | | | | | | ď, | - · ": | | | | | | raremeters to be evaluated broader than sampling reach | 8. Bank Stability
(score each bank)
Note: determine left
or right side by
facing downstream. | Banks stable; evidence of
crosion or bank failure
absent or minimal; little
potential for future
problems. <5% of bank
affected. | Moderately stable;
infrequent, small areas of
crosion mostly healed
over. 5-30% of bank in
reach has areas of crosion. | Moderately unstable; 30-60% of bank in reach bas
areas of erosion; high
crossion potential during
floods. | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank aloughing, 60-100% of bank has | | to be er | SCORE(LB)
SCORE(RB) | | | | erosional scars. | | | 9. Vegetative
Protection (score
each bank) | grazing or mowing
minimal or not evident; | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented, disruption evident but not affecting full plant growth potential to any great extent more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining. | Less than 50% of the streambenk surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. | | - 1 | SCORE(LB)
SCORE(RB) | | | | | | 17 | Vegetative Zone
Width (score each
sank riparian zone) | activities (i.e., parking | Width of riperian zone 12-18 meters; human activities have impacted zone only minimally. | 12 meters; human
activities have impacted | Width of riparian zone <6
meters: little or no
riparian vegetation due to
human activities. | | 1 | CORE(LB) | | | | | | Total | Score | | |-------|-------|--| | XULAL | Score | | | Station | | |---------|--| | RC1 | | | | 00.9 | (Á), | 4.53 | |-----------------------------|--------|--|--------| | PT Taxa | | HBI (Family) | | | Total Taxa EPT Taxa | 11.00 | | 462.00 | | Tota | 00 | FFG ³ | 72.55 | | | 102.00 | ıant taxa | 72. | | nce | | vo domir | | | Abundance | | Two Dominant Taxa # %Top two dominant taxa FFG # | | | | 41.00 | Taxa # | 74.00 | | Ţ | | ominant | | | Total P | 0 | Two Do | 4 | | Total Chironomidae Total PT | 54.00 | idae | 52.94 | | al Chiron | | % Chironomidae | | | Tota | 00.0 | 2 % | 00.0 | | |) | |) | | Scrapers | | ers | | | Total Scr | | % Scrapers | | | | 2.00 | dae | 27.45 | | roptera | | ropsychio | | | Total Ephemeroptera | | % PT less Hydropsychidae | | | Total | 00 | % PT | 1.96 | | | 13.00 | | 1. | | idae | | а | | | dropsych | | phemeroptera | | | Total Hy | | % Epher | | | % Ephemeroptera | % PT less Hydropsychidae | % Scrapers | % Chironomidae | Two Dominant Taxa # | Fwo Dominant Taxa # % Top two dominant taxa | FFG # | HBI (Family) | |--------------------------------|---------------------------------|---------------------------|----------------|---------------------|---|--------|--------------| | 1.96 | 27.45 | 0.00 | 52.94 | 74.00 | 72.55 | 462.00 | 4.53 | | RC1 | | | | | | | | | | VASCI Metrics vs. Standard VASC | VASCI Metrics (Truncated) | | | | | | | Number of Taxa | 50.00 | 20.00 | | | | | | | Number of EPT Taxa | 54.55 | 54.55 | | | | | | | Percent E | 3.20 | 3.20 | | | | | | | Percent PT Less Hydropsychidae | 77.11 | 77.11 | | | | | | | Percent Scrapers | 0.00 | 0.00 | | | | | | | Percent Chironomidae | 47.06 | 47.06 | | | | | | | Percent Two Dominant | 39.62 | 39.67 | | | | | | | Hilsenhoff Biotic Index | 80.45 | 80.45 | | | | | | | | 44.00 | | |-------------|-------|--| | Final VASCI | | | | | 44.00 | | | Raw VASCI | | | ### Benthic Macroinvertebrate Laboratory Bench Sheet | Station ID: | 20≠ | Sample Subsorted by: | | Date Subscried: | | | |------------------|----------|-------------------------------|---
---|-------------|--| | StationName: | | # of Grids subsorted: | | | | | | Date Sampled: | 11 | Total # of Subsorted Insects: | | | | | | Sampling Method: | | Sample identified by: | *************************************** | Date Identified: | | | | 100 0 0 0 000 | } | | | | | | | | | | | | Total # of | # to | | | | TAXON |
 - #cf | larvae | Organisms | | | 1 | Tipolida | | n e | | 2 | | | 2 | Chironon | | Jeff 184 | or have sale her sale | 54 | | | 3 | Emoidid | | 1 | A 100 May | | | | 4 | 1) | middle Chimarra | tiv | - , , , , | 3 | | | 5 | | chidae Quematopsycle | | | 13 | | | 6 | Capnidae | Allocophia | With talki | | 20 | | | 7 | Gomphid | ·e | 1 | | 1 | | | 8 | Similida | | Į | | 1 | | | 9 . | | ae leuctra | 111 | | 3 | | | 10 | | e Acentralla Bustis | - E-E-Lau | | 2. | | | 11 | | · | Ŋ | | 2 | | | 12 | | * | | | | | | 13 | | · | | | ······· | | | 14 | | | | . , | | | | 15 | | | | | 12 | | | 16 | | | | | | | | 17 | | | | | | : | | 18 | | | | | | | | 19 | :
: | | | | | | | 20 | | | | | | | | 21 | | | | | · | | | 22 | | | | 1 | | | | 22
23 | | | | | | - | | 24 | | | f. | \ | | • | | 25 | | • | | | | | | _ | | TOTALS | | | 102 | | ### Sub-sample and Sample Reduction (per SOP) | Cur | h | com | ماد | han | Com | nla | Dar | luction | Cheet | |-----|---|--------|-----|-----|------------|-----|-----|---------|--------| | IJЦ | v | ·SAIII | μıς | UUK | Эаш | րբ | Ver | iuchon | Office | Organisms found in first grid = 13 (Grid # 5) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. | Grid # of
I.D. # Organisms | Grid # of
LD.# Organisms | Grid # of
I.D.# Organisms | | |-------------------------------|-----------------------------|------------------------------|--------------| | 15 16 | | | | | 1 11 | | | | | 28 16 | | | | | 12 6 | | | | | 18 23 | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | Total organisms = | 102 Total gri | ids= <u>8</u> | | <u>IF</u> after picking, there are > 121 organisms, then return picked sample to 15-30 grid tray and remove grids (per SOP) to reduce sample to 121 organisms or less. Record data below. | Fotal # of organisms re
Grids removed to reduce | | tenieme or fewer = | |--|-----------------------|--| | Percentage of grids reta | | | | х х | | = | | (# of grids from original sample {A}) | (% of grids retained) | (final corrected # of grids
from original sample) | RC 4 ## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME PA | Crach | LOCATION | 150 m | ~ U5 | <u>Cong 51</u> | مك المحمد | oek. | |----------------------------|---|---|------------------|--------------------------------------|--|----------------|---------------------------------------| | STATION# RC RI | VERMÆE | STREAM CLAS | SS | | | · | | | LATLO | NG | RIVER BASIN | - M | | | | | | STORET# | | AGENCY | | | | | | | INVESTIGATORS | n IM | | / | | <u> </u> | | | | FORM COMPLETED BY | 012 | DATE W/5/ | Z AM (PM | REASON | FOR SURVEY | | | | | | | | | | | | | WEATHER
CONDITIONS | D pain (bhower | (heavy rain)
(steady rain)
s (intermittent)
loud cover
car/sumy | Past 24
hours | DALes 🗀 | en a heavy rain is
No
atoure <u>/ </u> | the last 7 day | · · · · · · · · · · · · · · · · · · · | | STE LOCATION/MAP | Draw a map of the sit | te and indicate the | | | | | | | | Pics | | | | PH | 8,0 | •
• | | | 93-98
Tohor | 3 | | | DO | 9.2 | | | | Ipro | | | | Cond | 1224 | 1 | | | | | | , , | Tay | D 9 | ,4 | STREAM
CHARACTERIZATION | Stream Origin Glacial Non-glacial montane | conittent C Tide | | Stream Type Cl Coldwater Catchment A | Warmwater | m² | | | | C) Swamp and bog | Other | | | | - | | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATE | RSHED
VRES | 部 | ominant Surrounding I
rest Com
skd/Pashno Chidu
giculmus C Othe | mercial
etrial | Local Watershed M
I No evidence Z So
I Obvious sources | one potential sources | |---------------------------------------|-----------------------------|------------------------------------|--|--|--|--| | . [| | | | • | Local Watershed Er | osion
te 🔾 Heavy | | RIPAR
VECET
(18 met | IAN
FATION
er buffer) | | ate the dominant types
sees
mant species present | nd record the
Shrubs | dominant species present | | | INSTRI
FEATU | EAM
RES | Ketin | nated Reach Leagth nated Stream Width Dibig Reach Area | | Canopy Covor
Dearly open Merk
High Water Mark | m | | | | | in km² (m²x1000)
nated Stream Depth | km² | Proportion of Reach
Morphology Types
Il Riffle //
Il Pool | Represented by Stream | | <u> </u> | | Surfa
(at th | ce Velocity
Alweg) | _m/sec | Channelized O Ye | s Ze No | | LARGE
DEBRIS | WOODY | LWD
Densi | | _m²/km² (LW1 | | | | AQUAT
VEGET | | Indies
D Roc
D Flor | ate the dominant type at
ted emergent
uting Algae | ad record the
Rooted submer
Attached Algae | dominant species present
gent G Rooted floating | ☐ Prec floating | | | | | ant species present
n of the reach with aqu | · | | | | WATED | QUALITY . | | | and vegetation | <u>20</u> % | <u>. </u> | | · · · · · · · · · · · · · · · · · · · | QUMAII . | Specif | crature°C ic Conductance ved Oxygen | | Water Odors Zi Normal/None D Sev Di Petrolcum Di Fishy | rage
D'Chemical
D'Other | | | | ₽Ħ | Hry | • . | Water Surface Offic
O Shok O Sheen (
O'None O Other | | | | | WQ1n | strument Used | <u> </u> | Turbidity (if not mess Clear G Slightly n Opaque C Stained | ured)
whid D Turbid
O Other | | SEDIMOLI
Subsyr | | Oders
D'Nom
O Chen
O Othe | eical Anacrobic | Petroleum
None | Deposits O Studge O Sawdnei O Relict shells | Other Sand | | <u>.</u> | | Offe | nt 🗆 Slight 🗔 Modere | ite O.Profi | Looking at stones which are the undersides blacks O Yes O Yes | h are not desply ambedded,
k in color? | | nnc | ORGANIC SUBS | TRATE | COMPONENTS | | ORGANIC SUBSTRATE C | OMPONENTS up to 100%) | | Substrate
Type | Diamete | r | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in
Sampling Area | | 3edrock | | | | Detritus | sticks, wood, coarse plant | | | 3ouldar - | > 256 mm (10") | | 0 |] | materials (CPOM) | 35 | | Cobble | 64-256 mm (2.5"-10") | | Muck-Mud | black, very fine organic | | | | Fravel | 2-64 mm (0.1"-2.5") 30 | | 1 | (FPOM) | | | | and | 0.06-2mm (gritty |) | 10 | Marl | grey, shell flagments | | | ilt | 0.004-0.06 mm | | 1.0 | | | | | Jay | < 0.004 mm (slic | k) | | [| | · | #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | |-------------------------|------------------------------| | STATION# RC \ RIVERMILE | STREAM CLASS | | LATLONG | RIVER BASIN | | STORET# | AGENCY | | INVESTIGATORS | | | FORM COMPLETED BY | DATE 115#2 REASON FOR SURVEY | | Г | Habitat | | Condition | ı Category | | |--|---
---|---|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifaunał
Substrata/
Available Cover | Creater than 70% of substrate favorable for epifiumal colonization and fish cover; nex of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking. | | | SCORE | | | | | | sempling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
scriment. Layering of
cobble provides diversity
of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment, | | ted l | SCORE | | 1 Mg | unione de la Company Com | | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth
Regime | All four velocity/depth, regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes
present (if fast-shallow is
missing, score lower than
if missing other regimes). | Only 2 of the 4 habitest
regimes present (if fast-
shallow or allow-shallow
are missing, score low). | Dominated by 1 velocity/
depth regime (usually
alow-deep). | | aran | SCORE | | | | | | 4 | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of
pools provalent. | Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition. | | | SCORE | | | | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
supposed. | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in channel and mostly present as standing pools. | | | SCORE | 4 | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | Habitat | | Conditi | on Category | | |--|--|--|---|---| | Paramete _F | Optimal | Suboptimal | Marginel | Poor | | 6. Channel
Alteration | Chamelization or dredging absent or minimal; stream with normal pattern. | Some channelization present, usually in areas of bridge abutments, evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabic
or coment; over 80% of
the stream reach
channelized and
disrupted. Instream
habitat greatly altered or
removed entirely. | | SCORE | | | | | | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7/1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend; bottom contours provide some habitst; distance between riffles divided by the width of the stream is between 15 to 25. | Generally all flat water of
shallow riffles; poor
habitat; distance between
riffles divided by
the
width of the stream is a
ratio of >25. | | | other large, natural obstruction is important. | | | | | SCORE | 4 - 9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | | | | 8. Bank Stability
(score each bank) | Banks stable; evidence of
erosion or bank failure
absent or minimal; fittle
potential for future | Moderately stable;
infrequent, small areas of
crosion mostly healed | Moderately unstable; 30-
60% of benk in reach has
areas of erosion; high | Unstable; many croded
areas; "raw" areas
frequent along straight | | Note: determine left
or right side by
facing downstream. | problems. <5% of bank
affected. | over, 5-30% of bank in
reach has areas of erosion. | erosion potential during
floods. | sections and bends;
obvious bank sloughing;
60-100% of bank has
crossocial scars. | | SCORE(LB)
SCORE(RB) | and the second of o | | | | | 9. Vegetative
Protection (score
each bank) | macrophytes, vegetative
discuption through
grazing or mowing
minimal or not evident; | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-balf of the potential plant | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation as very high; vegetation has been removed to 5 centimeters or less in average suibble height. | | SCORE(LB)
SCORE(RB) | | | III Tomas Karallan gekelik da
Tempanya dalam | | | bank riparian zone) | >18 meters; human
activities (i.e., parking | Width of riperism zone
12-18 meters; human
activities have impacted
zone only minimally. | 12 motors; human
activities have impacted | Width of riparian zone <6
neters: little or no
sparian vegetation due to
numan activities. | | SCORE(LB)
SCORE (RB) | | | | | Total Score ___ ROB | Station | | |---------|--| | | | | . Taxa | 00'9 | | |----------------------|--------|--| | Total Taxa EPT Taxa | 12.00 | | | ndance | 111.00 | | | Total PT Abu | 88.00 | | | Total Chironomidae | 15.00 | | | Total Scrapers | 1.00 | | | Total Ephemeroptera | 00:00 | | | Total Hydropsychidae | 12.00 | | | % Ephemeroptera | % PT less Hydropsychidae | % Scrapers | % Chironomidae | Two Dominant Taxa # | wo Dominant Taxa # %Top two dominant taxa FFG # H | HBI (Family) | |--------------------------------|----------------------------------|---------------------------|----------------|---------------------|---|--------------| | 0.0 | 0 68.47 | 0.90 | 13.51 | 64.00 | 57.66 316.00 | 2.85 | | GF1 | | | | | | | | | VASCI Metrics vs. Standard VASCI | VASCI Metrics (Truncated) | | | | | | Number of Taxa | 54.55 | | | | | | | Number of EPT Taxa | 54.55 | | | | | | | Percent E | 0.00 | | | | | | | Percent PT Less Hydropsychidae | 192.33 | 100.00 | | | | | | Percent Scrapers | 1.75 | | | | | | | Percent Chironomidae | 86.49 | | | | | | | Percent Two Dominant | 61.19 | | | | | | | Hilsenhoff Biotic Index | 105.19 | | | | | | | Final VASCI | 57.31 | | |-------------|-------|--| | Raw VASCI | 09:20 | | Benthic Macroinvertebrate Laboratory Bench Shee | Station ID: | GF1 | Sample Subsorted by: | | | | | |----------------|--------------|--|--------------------|---------------------------------------|-------------|-------------------| | StationName: | | # of Grids subsorted: | | Date Subsorted | | | | Date Sampled: | / . / | Total # of Subsorted Inse | | | | | | Sampling Metho | d: | Sample Identified by: | Kas: | | | <u> </u> | | | | | | Date Identified: | | | | | | TAXON | | | Total # of | # to | | 1 | Chironon | | | of larvae | Organisms | Ref.Co | | 5 | Similida | | LUT HIT HH | · · · · · · · · · · · · · · · · · · · | 15 | | | , <u> </u> | | | | | 닉 | | | | - Lipviida | <u>. </u> | | | 1 . | . " | | | - Lerydalida | <u>. </u> | | | | | | | Hydropso | yeardne Ceratopeu | he WIII | | 7 | · | | | li li | Cheumat go | | | 5 | · | | · | Elmida | | 34.0 | | | | | | Capulda | Allocapora | | | <u> </u> | · · | | | 1 | 1 - 12 | the that their the | - man man I | <u> 31</u> | | |) | Rhyacophi | , , , | LHI | | 6 | | |
I | Terneopte | rygidae Strophopter | JK HTWTIMTIMT | PALTHE III | 33 | , | | | Nemour | doe Amphinemore | - Ur | | 5 | | | <u> </u> | Philopotam | idae Wormaldia | _ h: | | 1 | · · · · · · · · · | | <u> </u> | Oligocha | cha | | | | | | | | | | | | | | · | | | Ī. | | | <u> </u> | | | · · · | <u> </u> | - | | | | | | | | | | | | | | | | | <u> </u> | | | | | · . | | | <u> </u> | | | | | | | <u> </u> | | | | | | | <u> </u> | | | | | | | | | | | | | | <u></u> | | | , | | —· | | | | | , | | | | | | | | | | · | | | | | | | | | | | | | 4 | TOTALS | | | 11 | | #### Sub-sample and Sample Reduction (per SOP) | Sub-sample | and | Sample | Reduction | Sheet | |------------|-----|--------|-----------|-------| |------------|-----|--------|-----------|-------| Organisms found in first grid = 41 (Grid # 24) A minimum of 4 grids must be picked. Magnifying visors are to be used when sub-sampling. | Grid # of
I,D, # Organisms | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | Grid # of
I.D. # Organisms | |---------------------------------------|---|---|-------------------------------| | 26 65
10 42 | | | | | 13 10 | | | | | | | | | | | | | | | | - | | | | | | | | | Total organisms = | 58 Total grid | s = | | | | | • | | | | | | , (| | | are >121 organisms, the
c) to reduce sample to 12 | | | | | retained = \frac{111}{110} ace sample to 121 organistained for sample (to total | | ·
• | | (# of grids from original sample {A}) | (% of grids | (final corrected # of gr
from original sample) | | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME EQU | er FK | LOCATION | | |---|-----------------------------|--|---| | | VERMILE | STREAM CLASS | | | | ONG | RIVER BASIN | | | STORET# | | AGENCY | | | | Y- JM | 1 | | | FORM COMPLETED BY | | DATE 11/3/10 | REASON FOR SURVEY | | | T. | TIME AM | <u> </u> | | | A - A. | | | | WEATHER
CONDITIONS | Now | Past 24 | Has there been a heavy rain in the last 7 days? | | CONDITIONS | □ storm | hours
(heavy rain) | O'Yes D'No | | 1 | nin 🗆 | (steady rain) Cl s (intermittent) Cl | Air Temperature (6 ° C | | | %□ <i>/</i> %/ | cloud cover 0 % | Other | | , | | | | | STTE LOCATION/MAP | Draw a map of the si | te and indicate the areas sam | pled (or attach a photograph) | | , , | $\mathcal{F}_{\mathcal{F}}$ | . 1 | | | · | G | CX GOZ. | Crayfish | | | | _ | σ Λ· Ι | | | | + 4 | Crayfish | | | | | | | | · | | | | | | | | | | PICS | | NH 4.7 | | | 1100 | | P | | | | | | | | 75-80 | | 93 | | | 45.00 | | 00 | | | Iphone | | | | $\mathcal{L}_{\mathbf{x}} = \sum_{i \in \mathcal{X}_{\mathbf{x}}} \mathcal{L}_{\mathbf{x}}$ | 201104E | | (mad 512 | | | width 1 | 4.1 | Cora 3 | | n - e | width ! | 14 | | | · | | | Touch 72 | | | al vi d | zva da v | 13 10m/0 +,T | | | = ' | | 1 | | | •-3 | | | | | | | | | , | | | | | STREAM | Stream Subsystem | | Stream Type | | CHARACTERIZATION | □ Percaniel □ Int | ermittent 🖾 Tidal 🔻 . | Stream Type Cl Coldwater Cl Warmwater | | , | Stream Origin | C) Spring-fed | Catchment Areakm² | | | Non-glacial montac | C) Spring-fed C) Mixture of origins C) Other | | ## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATE | ershed
Ures | 137 | lominant Surrounding I
nest C Con
cid/Pasture C Inch
gricultural C Other
sectorial | urtrial | Local Watershed D | ome potential sources | |-----------------------------------|--
--|--|-------------------------|--|---| | RIPAR
VEGE
(18 me | HAN
TATION
ter buffer) | J. A. | cate the dominant type
ces
inant species present | spirecord the
Shrubs | dominant species present | | | INSTR | EAM
URES | Estin
Samp
Area
Estin
Surfi | nated Stream Depth | 55 <u>m</u>
km² | High Water Mark Proportion of Reach Morphology Types C Raffic 60 % | Denveranted by Char | | LARGE WOODY LWD m² Density of LWD | | | | _m²/km² (L.WI |)/ reach area) | E TNO | | | AQUATIC VEGETATION Indicate the dominant type and Rooted emergent Floating Algae dominant species present Portion of the reach with aqua | | | Attached Algae | gent C Rooted floating | C) Free floating | | WATER | (QUALITY | Special Dissolution Dissolutio | cruture° C lc Conductance ved Oxygen | | Water Surface Oils O Slick O Sheen O None O Other | Chemical Cother Globs D Flecks | | SEDIME
SUBSTR | | Oders
O Non
O Cher | nal C Sewage | | Turbidity (if not mease of Clear Slightly by Stained Deposits Sindge Sawdust TRailet shells | ared Turbid Other | | <u> </u> | · | 00/ | nt □ Slight □ Moder | ste □ Profi | Looking at stopes which are the undersides blue | ch are not desply embedded,
ck in color? | | | (300000 80 | TRATE | COMPONENTS
100%) | | ORGANIC SUBSTRATE (| COMPONENTS | | Substrate
Type | Diamete | r . | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in
Sampling Area | | Boulder Cabble | oulder > 256 mm (10") | | <u>5</u> | Detritus | sticks, wood, course plant
materials (CPOM) | 25 | | Cobble
Gravel | 64-256 mm (2.5°
2-64 mm (0.1°-2 | 5") | 60
20 | Muck-Mud | black, very fine organic
(FPOM) | | | Sand
Silt | 0.06-2mm (gritty
0.004-0.06 mm |)
 | 10 | Mari | groy, shell fragments | | | Clay | < 0.004 mm (slic) | () | | <u> </u> | <u> </u> | | ## HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | | |-------------------------|-----------------------------|-------------------| | STATION# GF L RIVERMILE | STREAM CLASS | | | LATLONG | RIVER BASIN | | | STORET# | AGENCY | | | INVESTIGATORS | | | | FORM COMPLETED BY | DATE 11 5 / Z
TIME AM FM | REASON FOR SURVEY | | | Habitat | | Conditio | n Category | | |--|---|---|--|---|---| | 1 | Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifanual
Substrate/
Available Cover | Greater than 70% of substrate favorable for epifeumal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | adequate babitat for
maintenance of
populations; presence of
additional substrate in the
form of newfall, but not
yet prepared for
colonization (may rate at | 20-40% mix of stable | Less than 20% stable
habitat; lack of habitat is
obvious; substrate
unstable or lacking. | | 1 | SCORE | nor danascar). | high end of scale). | | | | Parameters to be evaluated in sampling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity | Grevel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
time sediment. | | | SCORE | of niche space. | | | | | | 3. Velocity/Depth
Regime | All four velocity/depth regimes present (slow-deep, slow-shellow, fast-deep, fast-shellow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes). | Only 2 of the 4 habitat
regimes present (if fast-
shallow or slow-shallow
are missing, score low). | Dominated by I velocity/
depth regime (usually
slow-deep). | | Para | SCORE | | nggaran (1964) ay | | | | | 4. Sediment
Deposition | and less than 5% of the
bottom affected by
sediment deposition. | | Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent. | Heavy deposits of fine material, mereased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition. | | | SCORE | | 1 | | | | | 5. Channel Flow
Status | both lower banks, and
minimal amount of | available channel; or
<25% of channel | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in
channel and mostly
present as standing pools. | | | SCORE | | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | | Habitat | | Condition | on Category | | |--------|--|--|---
--|---| | | <u>Parameter</u> | Optimal | Suboptimal | Marginal | Poor | | | 6. Channel
Alteration | Channelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Charmelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabies
or cement; over 80% of
the stream reach
channelized and
disrupted. Instream
habitat greatly altered or
ramoved entirely. | | | SCORE | | | | | | | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important. | Occurrence of riffles
infrequent; distance
between riffles divided by
the width of the stream is
between 7 to 15. | Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25. | Generally all flat water or
shallow riffles; poor
babitat; distance botween
riffles divided by the
width of the stream is a
ratio of >25. | | , | SCORE | | | | | | | 8. Bank Stability
(score each bank)
Note: determine left
or right side by
facing downstream. | Bunks stable; evidence of crossion or bank failure absent or minimal; little potential for finne problems. <5% of bank affected. | Moderately stable;
infrequent, small areas of
erosion mostly bealed
over. 5-30% of bank in
reach has areas of erosion. | Moderately unstable; 30-
60% of bank in reach has
areas of crosion; high
crosion potential during
floods. | Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sleughing; 60-100% of bank has erosional scars. | | | SCORE (LB)
SCORE (RB) | | | | Crosional scars. | | | 9. Vegetative
Protection (score
each bank) | | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; discription evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | half of the potential plant | Less than 50% of the streambank strifaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 continueters or less in average stubble height. | |) | SCORE(LB)
SCORE(RB) | | | The second secon | | | V
b | 0. Riparian
/egetative Zone
Vidth (score cach
ank riparian zone) | >18 meters; human
activities (i.e., parking | Width of riperisn zone 12-18 meters; human activities have impacted zone only minimally. | 12 meters; human
activities have impacted | Width of riparian zone <6 meters: little or no riparian vegetation due to numan activities. | | S | CORE(LE) | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | Total Score ____ ROB Road